
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

R1B2 GUI Detailed Design

Contract DBM-9713-NMS
TSR # 9901961

Document #M362-DS-007R0

July 19, 2000
By

Computer Sciences Corporation and PB Farradyne Inc

R1B2 GUI Detailed Design Rev. 0 i 11/20/00

Revision Description Pages Affected Date

0 Initial Release All July 19, 2000

R1B2 GUI Detailed Design Rev. 0 ii 11/20/00

Table of Contents
1 Introduction...1-1
1.1 Purpose..1-1

1.2 Objectives..1-1

1.3 Scope..1-1

1.4 Design Process ..1-1

1.5 Design Tools ..1-2

1.6 Work Products..1-2

2 Key Design Concepts ...2-1
2.1 Voice recording, conversion and playback ..2-1

2.2 Spell checking ...2-1

2.3 User and system profiles ..2-2

2.4 Factory choice when creating new objects...2-2

2.5 Error Processing...2-3

2.6 Installable Modules ..2-4

2.7 Startup and Shutdown...2-4

2.8 Packaging ..2-5

3 Package Designs ..3-1
3.1 CORBAUtilities ..3-1

3.2 DataModel...3-3

3.3 DataTransfer...3-12

3.4 DMSUtility ..3-13

3.5 GUI ..3-18

3.6 GUIDMSModule ..3-39

3.7 GUIDictionaryModule ...3-80

3.8 GUIHARModule ..3-90

3.9 GUIMessageLibraryModule ...3-139

3.10 GUIPlanModule ...3-158

R1B2 GUI Detailed Design Rev. 0 iii 11/20/00

3.11 GUIResourcesModule..3-173

3.12 GUITrafficEventModule ...3-182

3.13 GUIUserManagementModule...3-239

3.14 GUIUtility ...3-255

3.15 HARUtility ..3-274

3.16 Java Classes ..3-281

3.17 Navigator...3-285

3.18 Shazam Utility ..3-292

3.19 System Interfaces..3-293

3.20 Utility ...3-347

Acronyms
References
Appendix A – Glossary

R1B2 GUI Detailed Design Rev. 0 iv 11/20/00

Table of Figures
Figure 1. CORBAClasses (Class Diagram) ...3-1

Figure 2. DataModelClasses (Class Diagram) ...3-3

Figure 3. DataModel:AttachObserver (Sequence Diagram) ..3-7

Figure 4. DataModel:ObjectAdded_ (Sequence Diagram) ..3-8

Figure 5. DataModel:ObjectRemoved (Sequence Diagram) ...3-9

Figure 6. DataModel:ObjectUpdated (Sequence Diagram) ...3-10

Figure 7. DataModel:UpdateObservers (Sequence Diagram)..3-11

Figure 8. DataTransferClasses (Class Diagram) ..3-12

Figure 9. DMSUtility (Class Diagram) ..3-13

Figure 11. R1B2GUIClassDiagram (Class Diagram)..3-18

Figure 12. MiscClasses (Class Diagram) ...3-23

Figure 13. GUI:ChangeUserBasic (Sequence Diagram)..3-27

Figure 14. GUI:CommandObjectBasic (Sequence Diagram) ..3-28

Figure 15. GUI:DiscoveryBasic (Sequence Diagram)...3-29

Figure 16. GUI:EventUpdatePushedBasic (Sequence Diagram)...3-30

Figure 17. GUI:LoginBasic (Sequence Diagram)..3-31

Figure 18. GUI:LogoutBasic (Sequence Diagram)..3-32

Figure 19. GUI:MakeMenuMultipleSelect (Sequence Diagram) ..3-33

Figure 20. GUI:MakeMenuNoneSelected (Sequence Diagram)..3-34

Figure 21. GUI:MakeMenuSingleSelect (Sequence Diagram)..3-35

Figure 22. GUI:ShutdownBasic (Sequence Diagram) ...3-36

Figure 23. GUI:StartupBasic (Sequence Diagram)..3-37

Figure 24. GUI:SystemCommandBasic (Sequence Diagram)...3-38

Figure 25. DMSDialogs (Class Diagram) ..3-39

Figure 26. DMSModuleArchitecture (Class Diagram) ..3-42

Figure 27. DMSNavigatorSupport (Class Diagram)..3-48

Figure 28. GUIDMSModule:AddDMS (Sequence Diagram)..3-52

Figure 29. GUIDMSModule:AddDMSStoredMessageItem (Sequence Diagram)....................3-54

Figure 30. GUIDMSModule:BlankDMSInMaintenanceMode (Sequence Diagram)................3-55

Figure 31. GUIDMSModule:CreateDMSStoredMessage (Sequence Diagram)........................3-57

R1B2 GUI Detailed Design Rev. 0 v 11/20/00

Figure 32. GUIDMSModule:DiscoverEventchannels (Sequence Diagram)3-59

Figure 34. GUIDMSModule:DiscoverObjects (Sequence Diagram) ..3-60

Figure 35. GUIDMSModule:DMSRemovedEvent (Sequence Diagram)..................................3-61

Figure 36. GUIDMSModule:DMSStateChangeEvents (Sequence Diagram)3-62

Figure 37. GUIDMSModule:Login (Sequence Diagram) ...3-63

Figure 38. GUIDMSModule:Logout (Sequence Diagram)..3-64

Figure 39. GUIDMSModule:ModifyDMSSettings (Sequence Diagram)3-65

Figure 40. GUIDMSModule:ModifyDMSStoredMessage (Sequence Diagram)......................3-66

Figure 41. GUIDMSModule:PollNow (Sequence Diagram)...3-67

Figure 42. GUIDMSModule:PutDMSInMaintenanceMode (Sequence Diagram)....................3-68

Figure 43. GUIDMSModule:PutOnline (Sequence Diagram)...3-69

Figure 44. GUIDMSModule:RemoveDMS (Sequence Diagram) ...3-70

Figure 45. GUIDMSModule:Reset (Sequence Diagram) ..3-71

Figure 46. GUIDMSModule:SetMessageInMaintenanceMode (Sequence Diagram)...............3-72

Figure 47. GUIDMSModule:ShowTrueDisplay (Sequence Diagram)......................................3-73

Figure 48. GUIDMSModule:Shutdown (Sequence Diagram)...3-74

Figure 49. GUIDMSModule:Startup (Sequence Diagram)..3-75

Figure 50 GUIDMSModule:TakeOffline (Sequence Diagram)...3-76

Figure 51. GUIDMSModule:TrafficEventResponse-BlankDMS (Sequence Diagram)............3-77

Figure 52. GUIDMSModule:ModifyFP9500Settings (Sequence Diagram)..............................3-78

Figure 53. GUIDMSModule:TrafficEventResponse-SetDMSMessage
(Sequence Diagram) ..3-79

Figure 54. GUIDictionaryModuleClasses (Class Diagram) ..3-80

Figure 55. GUIDictionaryModule: DictionaryApprovedWordProperties
(Sequence Diagram) ..3-84

Figure 56. GUIDictionaryModule:DictionaryBannedWordProperties (Sequence Diagram) ...3-85

Figure 57. GUIDictionaryModule:Discovery (Sequence Diagram) ..3-86

Figure 58. GUIDictionaryModule:EventHandling (Sequence Diagram)3-87

Figure 59. GUIDictionaryModule:Shutdown (Sequence Diagram) ..3-88

Figure 60. GUIDictionaryModule:Startup (Sequence Diagram) ...3-89

Figure 61. Dialogs (Class Diagram)...3-90

Figure 62. HARModuleArchitecture (Class Diagram) ..3-92

R1B2 GUI Detailed Design Rev. 0 vi 11/20/00

Figure 63. NavigatorSupport (Class Diagram) ..3-98

Figure 64. GUIHARModule:AddHAR (Sequence Diagram) ..3-101

Figure 65. GUIHARModule:AddHARStoredMessageItem (Sequence Diagram)3-102

Figure 66. GUIHARModule:AddSHAZAM (Sequence Diagram)..3-103

Figure 67. GUIHARModule:AssociateMessageNotifier (Sequence Diagram)3-104

Figure 68. GUIHARModule:BlankHAR (Sequence Diagram) ...3-105

Figure 69. GUIHARModule:BlankHARInMaintenanceMode (Sequence Diagram)3-106

Figure 70. GUIHARModule:CreateHARStoredMessage (Sequence Diagram)3-108

Figure 171. GUIHARModule:CreateResponsePlanItem (Sequence Diagram)3-109

Figure 72. GUIHARModule:DeleteHARMessageFromController (Sequence Diagram)3-110

Figure 73. Discovery:Basic (Sequence Diagram) ..3-111

Figure 74. GUIHARModule:ListenToAudioClip (Sequence Diagram)3-112

Figure 75. GUIHARModule:ListenToTextClip (Sequence Diagram).....................................3-113

Figure 76. Login:Basic (Sequence Diagram)...3-114

Figure 77. GUIHARModule:Logout (Sequence Diagram)..3-115

Figure 78. GUIHARModule:ModifyHARSettings (Sequence Diagram)3-117

Figure 79. GUIHARModule:ModifyHARStoredMessage (Sequence Diagram)3-118

Figure 80. GUIHARModule:ModifySHAZAMSettings (Sequence Diagram)........................3-119

Figure 81. GUIHARModule:PutHARInMaintenanceMode (Sequence Diagram)3-120

Figure 82. GUIHARModule:PutHAROnline (Sequence Diagram)...3-121

Figure 83. GUIHARModule:PutSHAZAMInMaintenanceMode (Sequence Diagram)..........3-122

Figure 84. GUIHARModule:PutSHAZAMOnline (Sequence Diagram)3-123

Figure 85. GUIHARModule:RemoveHAR (Sequence Diagram)..3-124

Figure 86. GUIHARModule:RemoveSHAZAM (Sequence Diagram)3-125

Figure 87. GUIHARModule:ResetHAR (Sequence Diagram) ..3-126

Figure 88. GUIHARModule:SetHARMessage (Sequence Diagram)......................................3-127

Figure 89. GUIHARModule:SetHARMessageInMaintenanceMode (Sequence Diagram) ...3-128

Figure 90. GUIHARModule:SetupHAR (Sequence Diagram)..3-129

Figure 91. Startup:Basic (Sequence Diagram)...3-130

Figure 92. GUIHARModule:Shutdown (Sequence Diagram) ...3-131

Figure 93. GUIHARModule:StoreHARMessageInController (Sequence Diagram)...............3-132

Figure 94. GUIHARModule:TakeHAROffline (Sequence Diagram)3-133

R1B2 GUI Detailed Design Rev. 0 vii 11/20/00

Figure 95. GUIHARModule:TakeSHAZAMOffline (Sequence Diagram).............................3-134

Figure 96. GUIHARModule:TurnOffHARTransmitter (Sequence Diagram).........................3-135

Figure 97. GUIHARModule:TurnOnHARTransmitter (Sequence Diagram)..........................3-136

Figure 98. GUIHARModule:ViewHARSlotUsage (Sequence Diagram)................................3-137

Figure 99. GUIHARModule:ViewHARStoredMessage (Sequence Diagram)........................3-138

Figure 100. GUIMessageLibraryClasses (Class Diagram) ..3-139

Figure 101. GUILibraryModule:CreateLibrary (Sequence Diagram)3-143

Figure 102. GUILibraryModule:CreateStoredMessage (Sequence Diagram).........................3-144

Figure 103. GUILibraryModule:DeleteLibrary (Sequence Diagram)3-145

Figure 104. GUILibraryModule:DeleteStoredMessage (Sequence Diagram).........................3-146

Figure 105. GUILibraryModule:Discovery (Sequence Diagram) ...3-147

Figure 106. GUILibraryModule:HandleEventLibraryAdded (Sequence Diagram)3-148

Figure 107. GUILibraryModule:HandleEventLibraryNameChange (Sequence Diagram)3-149

Figure 108. GUILibraryModule:HandleEventLibraryRemoved (Sequence Diagram)............3-150

Figure 109. GUILibraryModule:HandleEventStoredMessageAdded (Sequence Diagram)...3-151

Figure 110. GUILibraryModule:HandleEventStoredMessageRemoved
(Sequence Diagram) ..3-152

Figure 111. GUILibraryModule:Login (Sequence Diagram) ..3-153

Figure 112. GUILibraryModule:Logout (Sequence Diagram) ..3-154

Figure 113. GUILibraryModule:SetLibraryName (Sequence Diagram)3-155

Figure 114. GUILibraryModule:Shutdown (Sequence Diagram)..3-156

Figure 115. GUILibraryModule:Startup (Sequence Diagram) ..3-157

Figure 116. GUIPlanClasses (Class Diagram)...3-158

Figure 117. GUIPlanModule:AddPlan (Sequence Diagram)...3-161

Figure 118. GUIPlanModule:CreatePlanItem (Sequence Diagram)..3-162

Figure 119. GUIPlanModule:Discovery (Sequence Diagram) ..3-164

Figure 120. GUIPlanModule:PlanAddedEvent (Sequence Diagram)3-165

Figure 121. GUIPlanModule:PlanItemAddedEvent (Sequence Diagram)3-166

Figure 122. GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)..........................3-167

Figure 123. GUIPlanModule:PlanRemovedEvent (Sequence Diagram).................................3-168

Figure 124. GUIPlanModule:RemovePlan (Sequence Diagram) ..3-169

Figure 125. GUIPlanModule:RemovePlanItem (Sequence Diagram).....................................3-170

R1B2 GUI Detailed Design Rev. 0 viii 11/20/00

Figure 126. GUIPlanModule:Shutdown (Sequence Diagram) ..3-171

Figure 127. GUIPlanModule:Startup (Sequence Diagram) ...3-172

Figure 128. GUIResourcesModuleClasses (Class Diagram) ...3-173

Figure 129. GUIResourcesModule:Discovery (Sequence Diagram).......................................3-176

Figure 130. GUIResourcesModule:EventHandling (Sequence Diagram)3-177

Figure 131. GUIResourcesModule:Login (Sequence Diagram)..3-178

Figure 132. GUIResourcesModule:Logout (Sequence Diagram)..3-179

Figure 133. GUIResourcesModule:Shutdown (Sequence Diagram)3-180

Figure 134. GUIResourcesModule:Startup (Sequence Diagram)..3-181

Figure 135. GUITrafficEventModuleClasses (Class Diagram) ...3-182

Figure 136. GUITrafficEventModuleUtilityClasses (Class Diagram).....................................3-190

Figure 137. EventDialogs (Class Diagram) ...3-194

Figure 138. GUITrafficEventModule:AddCommLogEntry (Sequence Diagram)3-200

Figure 139. GUITrafficEventModule:AddDeviceToResponse (Sequence Diagram)3-201

Figure 140. GUITrafficEventModule:AddEvent (Sequence Diagram)3-203

Figure 141. GUITrafficEventModule:AddPlanItemToResponse (Sequence Diagram)3-204

Figure 142. GUITrafficEventModule:AddPlanToResponse (Sequence Diagram)..................3-205

Figure 143. GUITrafficEventModule:AddResponseParticipation (Sequence Diagram)........3-207

Figure 144. GUITrafficEventModule:AddResponsePlanItem (Sequence Diagram)...............3-208

Figure 145. GUITrafficEventModule:AddTextToEventHistory (Sequence Diagram)3-209

Figure 146. GUITrafficEventModule:AssociateEvent (Sequence Diagram)3-210

Figure 147. GUITrafficEventModule:ChangeEventType (Sequence Diagram)......................3-211

Figure 148. GUITrafficEventModule:CloseEvent (Sequence Diagram).................................3-212

Figure 149. GUITrafficEventModule:Discovery (Sequence Diagram)...................................3-214

Figure 150. GUITrafficEventModule:ExecuteResponse (Sequence Diagram)3-215

Figure 151. GUITrafficEventModule:ExecuteResponseItem (Sequence Diagram)................3-216

Figure 152. GUITrafficEventModule:GetEventHistoryText (Sequence Diagram).................3-217

Figure 153. GUITrafficEventModule:HandleEventCommLogEntryAdded
(Sequence Diagram) ..3-218

Figure 154. GUITrafficEventModule:HandleEventEventAdded (Sequence Diagram)3-219

Figure 155. GUITrafficEventModule:HandleEventEventAssociated (Sequence Diagram)...3-220

Figure 156. GUITrafficEventModule:HandleEventEventClosed (Sequence Diagram)3-221

R1B2 GUI Detailed Design Rev. 0 ix 11/20/00

Figure 157. GUITrafficEventModule:HandleEventEventDeleted (Sequence Diagram)........3-222

Figure 158. GUITrafficEventModule:HandleEventEventTypeChanged
(Sequence Diagram) ..3-223

Figure 159. GUITrafficEventModule:HandleEventResponseParticipationAdded (Sequence
Diagram)..3-224

Figure 160. GUITrafficEventModule:HandleEventResponseParticipationRemoved
(Sequence Diagram) ..3-225

Figure 161. GUITrafficEventModule:HandleEventResponsePlanItemAdded
(Sequence Diagram) ..3-226

Figure 162. GUITrafficEventModule:HandleEventTrafficEventStateChanged
(Sequence Diagram) ..3-227

Figure 163. GUITrafficEventModule:Login (Sequence Diagram)..3-228

Figure 164. GUITrafficEventModule:Logout (Sequence Diagram)..3-229

Figure 165. GUITrafficEventModule:ModifyResponseParticipationData
(Sequence Diagram) ..3-230

Figure 166. GUITrafficEventModule:ModifyResponsePlanItemMessage
(Sequence Diagram) ..3-232

Figure 167. GUITrafficEventModule:RemoveItemFromResponse (Sequence Diagram)......3-233

Figure 168. GUITrafficEventModule:RemoveResponseParticipation
(Sequence Diagram) ..3-234

Figure 169. GUITrafficEventModule:SearchCommLog (Sequence Diagram)3-235

Figure 170. GUITrafficEventModule:SetLaneConfiguration (Sequence Diagram)................3-236

Figure 171. GUITrafficEventModule:Shutdown (Sequence Diagram)3-237

Figure 172. GUITrafficEventModule:Startup (Sequence Diagram)..3-238

Figure 173. GUIUserManagementClasses (Class Diagram)..3-239

Figure 174. GUIUserManagementModule:AddUser (Sequence Diagram).............................3-242

Figure 175. GUIUserManagementModule:ConfigureRoles (Sequence Diagram)3-243

Figure 176. GUIUserManagementModule:ConfigureUsers (Sequence Diagram)3-244

Figure 177. GUIUserManagementModule:CreateRole (Sequence Diagram)3-245

Figure 178. GUIUserManagementModule:DeleteRole (Sequence Diagram)3-246

Figure 179. GUIUserManagementModule:DeleteUser (Sequence Diagram)3-247

Figure 180. GUIUserManagementModule:Discovery (Sequence Diagram)...........................3-248

Figure 181. GUIUserManagementModule:ForceLogout (Sequence Diagram).......................3-249

Figure 182. GUIUserManagementModule:GrantRole (Sequence Diagram)...........................3-250

R1B2 GUI Detailed Design Rev. 0 x 11/20/00

Figure 183. GUIUserManagementModule:Login (Sequence Diagram)..................................3-251

Figure 184. GUIUserManagementModule:ModifyRole (Sequence Diagram)........................3-252

Figure 185. GUIUserManagementModule:RevokeRole (Sequence Diagram)........................3-253

Figure 186. GUIUserManagementModule:Startup (Sequence Diagram)................................3-254

Figure 187. AudioClasses (Class Diagram) ...3-255

Figure 188. FilterClasses (Class Diagram) ..3-256

Figure 189. GUIUtility:AddFilter (Sequence Diagram) ..3-261

Figure 190. GUIUtility:BuildFilterHierarchy (Sequence Diagram) ..3-262

Figure 191. GUIUtility:CleanupSystemFilters (Sequence Diagram)3-263

Figure 192. GUIUtility:CleanupUserFilters (Sequence Diagram)...3-264

Figure 193. GUIUtility:InitializeSystemFilters (Sequence Diagram)......................................3-265

Figure 194. GUIUtility:InitializeUserFilters (Sequence Diagram)..3-266

Figure 195. GUIUtility:LoadFilters (Sequence Diagram) ...3-267

Figure 196. GUIUtility:ModifyFilterProperties (Sequence Diagram).....................................3-268

Figure 197. GUIUtility:RemoveFilter (Sequence Diagram)..3-269

Figure 198. GUIUtility:StoreFilterIDs (Sequence Diagram)...3-270

Figure 199. GUIUtility:UpdateForFilterChange (Sequence Diagram)....................................3-272

Figure 200. GUIUtility:UpdateForObjectChanges (Sequence Diagram)3-273

Figure 201. HARUtility (Class Diagram) ..3-274

Figure 202. HARUtility:PushAudio (Sequence Diagram)...3-279

Figure 203. HARUtility:StoreAudioClip (Sequence Diagram) ...3-280

Figure 204. JavaClasses (Class Diagram) ..3-281

Figure 205. NavigatorClasses (Class Diagram) ...3-285

Figure 206. Navigator:AddNavigables (Sequence Diagram) ..3-288

Figure 207. Navigator:Initialize (Sequence Diagram) ...3-289

Figure 208. Navigator:RemoveNavigables (Sequence Diagram) ..3-290

Figure 209. Navigator:TreeSelectionChange (Sequence Diagram)...3-291

Figure 210. SHAZAMUtility (Class Diagram)..3-292

Figure 211. AudioCommon (Class Diagram) ..3-293

Figure 212. CommLogManagement (Class Diagram)...3-296

Figure 213. Common (Class Diagram) ..3-298

Figure 214. DeviceManagement (Class Diagram)...3-301

R1B2 GUI Detailed Design Rev. 0 xi 11/20/00

Figure 215. DictionaryManagement (Class Diagram) ...3-304

Figure 216. DMSControl (Class Diagram) ..3-306

Figure 217. PlanManagement (Class Diagram) ...3-315

Figure 218. HARControl (Class Diagram) ..3-318

Figure 219. ResourceManagement (Class Diagram) ...3-324

Figure 220. HARNotification (Class Diagram) ...3-328

Figure 221. LibraryManagement (Class Diagram) ..3-331

Figure 222. LogCommon (Class Diagram)..3-334

Figure 223. TrafficEventManagement (Class Diagram)..3-336

Figure 224. TrafficEventManagement2 (Class Diagram)..3-341

Figure 225. UserManagement (Class Diagram)...3-345

Figure 226. UtilityClasses (Class Diagram)...3-347

Figure 227. UtilityClasses2 (Class Diagram)...3-354

Figure 228. DatabaseLogger:getEntries (Sequence Diagram)...3-356

Figure 229. DictionaryWrapper:checkForBannedWords (Sequence Diagram)3-358

R1B2 GUI Detailed Design Rev. 0 1-1 11/20/00

1 Introduction

1.1 Purpose
This document describes the detailed design of the Chart II Graphical User Interface (GUI)
application for Release 1, Build 2. This design is driven by the Release 1, Build 2 requirements
as stated in document M361-RS-002R1, “CHART II System Requirements Specification
Release 1 Build 2” and further refines the high level design presented in document M362-DS-
005, “R1B2 High Level Design”.

1.2 Objectives
The main objective of this design is to provide software developers with a framework in which to
provide implementation of the software components used to satisfy the requirements of release 1,
build 2 of the Chart II system user interface. This document focuses on the client side of each of
the system use cases.

1.3 Scope
This design is limited to Release 1, Build 2 of the Chart II system and the requirements as stated
in the aforementioned requirements document.

1.4 Design Process
As in the high level design, object-oriented analysis and design techniques were used in creating
this design. As such, much of the design is documented using diagrams that conform to the
Unified Modeling Language (UML), a de facto standard for diagramming object-oriented
designs.

In the high level design, system interfaces were identified and specified. These interfaces were
partitioned into logical groupings of packages. This design serves to fill in the details necessary
to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its
own class diagram and sequence diagrams for major operations included in the package’s
interfaces. Additionally, packages needed for implementation but not present in the high level
design are included in this design, with each of these also having its own class diagram and
sequence diagrams. Packages are also included for third party software that is needed by the
CHART II software, such as the ORB and Java classes. Only classes and methods shown on the
sequence diagrams are included in diagrams for third party products.

The design process for each package involved starting with a class diagram including interfaces
from the high level design, and filling in details to the class diagram to move toward
implementation. Sequence diagrams were then used to show how the functionality is to be
carried out. An iterative process was used to enhance the class diagram as sequence diagrams
identified missing classes or methods.

R1B2 GUI Detailed Design Rev. 0 1-2 11/20/00

1.5 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the Chart II project, R1B2 configuration,
SystemDesign phase, A system version is included for each software package.

1.6 Work Products
This design contains the following work products:

• = A UML Class diagram for each package showing the low level software objects
which will allow the system to implement the interfaces identified in the high level
design.

• = UML Sequence diagrams for non-trivial operations of each interface identified in the
high level design. Additionally, sequence diagrams are included for non-trivial
methods in classes created to implement the interfaces. Operations that are considered
trivial are operations that do nothing more than return a value or a list of values and
where interaction between several classes is not involved.

R1B2 GUI Detailed Design Rev. 0 2-1 11/20/00

2 Key Design Concepts
This section provides a high level description of various elements of the design that warrant

special attention either due to their technical complexity, central role to system operations, or
deviation from previous project practice. For a thorough discussion of how the CHART II GUI

fits into the architecture of the CHART II system please refer to the Software Architecture
section of document M-361-DS-003R0,

“CHART II GUI High Level Design For Release 1 Build 1”.

2.1 Voice recording, conversion and playback
The CHART II GUI allows an operator to enter a message for activation on a HAR device or
storage in a message library in either text or voice format. If the operator opts to record a voice
format message, the GUI records the operator’s voice via a microphone device attached to the
workstation.

The GUI utilizes the javax.sound package to capture the operator’s voice. The GUI also allows
an operator to listen to the contents of a HAR message using the sound card and speakers
attached to his/her workstation. The message is composed of multiple message clips. Each clip is
either a text clip, a voice data clip, a voice clip, or a pre-stored message clip. Each of these types
of message clips requires slightly different processing in order to be played back to the user in an
audible format. A text message clip must be converted into an audible format by the text to
speech conversion engine before it can be played. A voice data clip requires no conversion
because it contains the binary data required for playback. In this case, the GUI will simply play
the data contained in the clip directly back to the user. A voice clip is a message clip used by the
system to pass a HAR message around without actually passing the binary audio data. Instead,
the clip contains a reference to a CORBA object that can be called to get the binary data via a
streaming interface if the data is needed. If the GUI encounters this type of clip, it will call the
remote CORBA object and request that the binary data be streamed. A pre-stored message clip is
a clip that represents a message that has been stored in a slot on the HAR controller. When the
GUI encounters this type of message clip, it will check the configuration object for the HAR and
get the message clip stored in the specified slot. The clip in the slot will then be processed as
previously mentioned to get the audio data. In all cases, once the GUI has obtained the binary
audio data it utilizes the javax.sound package to play the data back for the user through the
workstation’s sound card and speakers.

2.2 Spell checking
When an operator is entering message text for display on a HAR or DMS device or for storage in
a library message, the system will provide assistance in the form of a simple spelling check. The
check may be performed at the operator’s request while editing the message and will be
performed automatically when the operator hits the OK button if the message has been modified
since the last spell check. The spell check processing will be performed as follows: Beginning at
the start of the text, each word will be checked against a list of approved words in the system. If

R1B2 GUI Detailed Design Rev. 0 2-2 11/20/00

the word is not a known approved word, a list of (up to three) suggestions will be presented to
the user. The suggestions will be composed of the approved words that are lexigraphically
closest to the word being checked. The operator will be allowed to ignore the suggestion, ignore
all cases where this word exists in the message or replace the word with one of the suggested
words. After the user selects his/her option, the system will proceed to the next word and the
process will be repeated.

2.3 User and system profiles
In order to allow an operator to modify the working environment of the CHART II system and
allow that environment to maintain consistency across workstations, the system will record
properties in profiles. The system will use three types of profiles to store preferences; a system
profile, a user profile, and a user properties file. A system profile stores properties that pertain to
all users regardless of the workstation where they are working. A user profile stores properties
that pertain to a particular user regardless of the workstation where the user is logged in. A user
properties file stores properties that pertain to a particular user at a particular workstation. In
order to make the information in a user or system profile available regardless of the workstation
where the user logs in, the properties are stored in the user management database. The user’s
profile and the system profile are each a collection of key/value pairs. The software functions as
follows: When a user logs in his/her user profile and the system profile are retrieved from the
user management database and are stored in a temporary Java properties object on the
workstation. Property queries are performed against the local properties object for efficiency
sake. If the user modifies an existing property or adds a new property, the change is made to the
local properties object and to the user or system profile in the user management database as
appropriate. Thus, the modifications are available in the profile the next time the user logs in at
any workstation.

2.4 Factory choice when creating new objects
When an operator is adding a new object to a distributed system, it is necessary to determine
which service should be responsible for serving the new object. In the CHART II system, each
service that is capable of serving a particular type of object publishes a factory in the CORBA
trading service. Each factory is named according to the district or region from which it is served.
For maximum configuration flexibility, the GUI will present the user with this list of factories on
the object creation dialog. If the operator selects a particular factory, the system attempts to
create the new object using that factory. Any errors encountered are reported to the user and no
further processing is performed until the operator takes further action. Along with the list of
factories, the operator is presented with an option to allow the software to ‘Auto-select’ a factory
to add the new object to. If this option is selected, the software attempts to add the new object to
each factory in the system, in succession, until it is successfully added to a factory. An error is
reported if and only if no factory in the system can create the new object.

R1B2 GUI Detailed Design Rev. 0 2-3 11/20/00

2.5 Error Processing
Because CHART II is a distributed object system, it is expected that any call to a remote object
could cause a CORBA exception to be thrown. All software calls to remote objects handle
CORBA exceptions and the processing is not shown on sequence diagrams within this design
except where it serves to illustrate a design point.

Additionally, CHART II object interfaces explicitly declare exceptions that may be thrown when
a particular method is invoked. All CHART II defined exceptions contain information that can
be displayed to the user as well as debugging information. The CHART II GUI handles errors in
the following manner. All user displayable error information is displayed to the user in a status
pane at the bottom of the active dialog box or in the command status window if no dialog is
available. The GUI also utilizes the Log utility class to maintain a flat file that contains
debugging information. Each entry in the file contains the name of the class that logged the
entry, the date and time the entry was logged, and descriptive text of the error that occurred. The
log utility also provides the ability for a stack trace to be printed to the file to accompany the
error. This feature is reserved for use when an error condition is caught and the exact cause of
the error condition is not known, or when it is known that the caller of the method performing
the log passed invalid data. Log files created by the Log utility class are self-cleaning and are
automatically removed from the system when they reach a certain age, as specified in a
configuration file.

The CHART II GUI also adds a software communications failed state to each remote object.
This state is used to indicate that a remote object was not reachable the last time that the system
attempted to communicate with it. This information is essential in a distributed software system
where objects become unavailable temporarily due to server or network outages. The GUI tracks
this state as follows. Each time the GUI attempts an operation on a remote object, if the object
cannot be reached, it will be put into a software communications failed state. If the object can be
reached, regardless of whether the operation succeeds or throws a defined exception, the GUI
marks the object as not being in a software communications failed state.

R1B2 GUI Detailed Design Rev. 0 2-4 11/20/00

2.6 Installable Modules
The CHART II GUI application has been designed as a core GUI module and a collection of
installable modules. The core GUI module provides access to the services and data needed by
any installable module and also provides the main windows of the application. Each installable
module adds a coherent set of functionality and windows that are not required by other modules.
This design serves to break the application into understandable packages and has the added
benefit of allowing for scaled down deployments with limited functionality. At initialization the
core GUI module reads a Java properties file and determines which installable modules should
be instantiated. The core GUI module then coordinates the activities of each of the installed
modules while the application is running. Significant events, such as a user logging in or out of
the application, are passed along to each installed module providing them an opportunity to
perform cleanup activities.

Throughout the design, there are instances where a particular module needs to access the services
of another installable module. This type of coordination typically involves registering one
module as a supporter of another module. A good example of this can be observed in the plan
module. The plan module can create a plan without the support of any other module. However, it
cannot add any items to the plan because the DMS or HAR installable modules must create
them. Thus, the plan module provides an API for other modules to call to register as a plan item
creation supporter. The plan module may then delegate creation of new plan items to the
installed creation supporters. In all cases where a module relies on a call to another installable
module the call is made with the expectation that an exception may be thrown indicating that the
other module does not exist. If this is the case, the calling module will handle the exception and
continue processing as normal. The services provided by the called module will not be available
during this instance of the GUI application because the module was not installed.

2.7 Startup and Shutdown
In order to startup correctly, the CHART II GUI requires a CORBA trading service. It will
search the trading service for the OperationsCenter object that it will be utilizing to allow a user
to login. Both the location of the CORBA trading service and the name of the operations center
that the user will log in at are configurable in the GUI properties file which resides in the GUI
directory after installation. If the trading service is not available, or the desired operations center
is not available, the GUI will issue an error message to the operator and will allow the user to
shut it down. The GUI has no other dependencies on external services, nor does it have any
dependencies on the order in which installable modules are installed. At startup the GUI will
read the properties file and will construct an instance of each of the installable modules listed.
After all modules have been constructed, the startup method of each module is called. This
guarantees that when any particular module’s startup method is being performed, any other
modules that it interacts with will have already been constructed. At shutdown, the GUI calls the
shutdown method of each installed module. After shutting down all modules, it deactivates the
ORB and POA and exits.

R1B2 GUI Detailed Design Rev. 0 2-5 11/20/00

2.8 Packaging
This software design is broken into many packages of related classes. The table below shows
each of the packages along with a description of each.

CORBAUtilities This package contains classes included in the third party
ORB product used for implementation. Only classes that are
directly referenced from diagrams for CHART II software
are included in this package’s diagrams.

DataModel This package includes classes that are used to provide an
implementation of the subject observer design pattern.

DataTransfer This package contains classes that are used to support drag
and drop operations in the CHART II GUI.

DMSUtility This package contains utility classes that are shared among
the server and GUI DMS modules. Examples of DMSUtility
classes are the MultiConverter and implementation of value
types defined in the DMSControl system interfaces.

GUI This package contains classes that are core to the CHART II
GUI application such as the main GUI toolbar window, the
command status window and the command failures window.

GUIDMSModule This package contains an installable GUI module that
provides all DMS related functionality.

GUIDictionaryModule This package contains an installable GUI module that
provides all dictionary-related functionality.

GUIHARModule This package contains an installable GUI module that
provides all HAR and SHAZAM related functionality.

GUIMessageLibraryModule This package contains an installable GUI module that
provides all message library related functionality.

GUIPlanModule This package contains an installable GUI module that
provides all plan-related functionality.

GUIResourcesModule This package contains an installable GUI module that
provides all shared resource related functionality. This
includes the transfer shared resources dialog.

GUITrafficEventModule This package contains an installable GUI module that
provides all traffic event related functionality. This package
also includes the client side functionality for the Comm. Log.

R1B2 GUI Detailed Design Rev. 0 2-6 11/20/00

GUIUserManagementModule This package contains an installable GUI module that
provides all user management related functionality.

GUIUtility This package contains classes that are used by many
installable GUI modules.

HARUtility This package contains HAR related utility classes shared by
the server and GUI.

JavaClasses This package contains classes included in the Java
programming language. Only classes that are directly
referenced from diagrams for CHART II software are
included in this package’s diagrams.

Navigator This package contains classes that implement the Navigator
window of the CHART II GUI.

SHAZAMUtility This package contains SHAZAM related utility classes
shared by the server and GUI.

SystemInterfaces This package contains the CORBA interfaces and related
definitions for the CHART II system. These interfaces and
classes define the IDL for the CHART II system.

Utility This package contains utility classes shared by other
packages, including classes used to access the database and
the OperationsLog class.

The remainder of this document contains detailed designs of each of the above packages.

R1B2 GUI Detailed Design Rev. 0 3-1 11/20/00

3 Package Designs

3.1 CORBAUtilities

3.1.1 Class Diagrams
3.1.1.1 CORBAClasses (Class Diagram)

The CORBAUtilities package exists to provide reference to classes that are supplied by the
ORB Vendor and are referenced by other packages’ class or sequence diagrams.

POAManager POA

CosEvent.
PushConsumer

CosEventChannelAdmin.
EventChannel

ORB

com.ooc.CosEventChannelAdmin.impl.EventChannel

CosTrading.Lookup
CosTrading.Register

activate_object(Servant obj)
deactivate_object(object_id)
deactivate()
the_POAManager() : POAManager
create_POA() : POA

activate()
deactivate()

query
export
withdraw

pushfor_consumers()
for_suppliers()
destroy()

init()
resolve_initial_references()
string_to_object()
object_to_string()
run()

Figure 1. CORBAClasses (Class Diagram)

3.1.1.1.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor’s implementation of a CORBA event channel. The event
service provided by the vendor simply serves one of these objects. The Extended Event
Service serves a factory that allows multiple instances of the vendor supplied event channel
to be created.

R1B2 GUI Detailed Design Rev. 0 3-2 11/20/00

3.1.1.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.1.1.1.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.1.1.1.4 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.1.1.1.5 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.1.1.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.1.1.1.7 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

3.1.1.1.8 POAManager (Class)

This interface represents the portable object adapter manager used to activate and deactivate
the POA.

R1B2 GUI Detailed Design Rev. 0 3-3 11/20/00

3.2 DataModel

3.2.1 Class Diagrams

3.2.1.1 DataModelClasses (Class Diagram)

The data model classes represent a collection of objects which, when altered via the
DataModel, will notify observers that they have been modified. The notification will be
delivered in the form of a call to the observer’s update() method and will include a
collection of changes that have occurred in the system in the preceding interval. Each
change is either an object added change, an object removed change, or an object updated
change. If the change is an object updated change it may include hints that help an observer
determine if it needs to take any action based on the change.

1

*

GUIUpdaterjava.lang.Runnable

*

DataModel

UpdatePriorityLevel

ModelObserver

ObjectUpdated

1

1

1
1

1

ObjectChange

ObjectAdded ObjectRemoved

UpdateHint

51

1 1
1

1

Identifier

*

1

*

1

ModelChange

GUIModelObserver

*

1

*

1

This is the class
which will be
used as a key to
store and look up
all Identifiable objects

ChangeCollection

java.util.Hashtable

run()

addHint()
getHints()
numHints()

getObject(keyObject)
getObjectsOfType(class)
getAllObjects()
attachObserver(modelObserver, priority)
detachObserver(modelObserver)
objectAdded(keyObject, object)
objectUpdated(keyObject, updateHint)
objectRemoved(keyObject)
setUpdateInterval(priority, interval)
getUpdateInterval(priority)

run()
getPriority()
isAttached(observer)
attach(observer)
detach(observer)
getUpdateInterval()
objectAdded(keyObject, object)
objectUpdated(keyObject, updateHint)
objectRemoved(keyObject)
setUpdateInterval()
-getChangeCollection(Class checkClass)
-getChangesAndReset()
-getObservers()
-updateObservers()

m_delay
m_priority

isEqual(rhs)

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

update(ModelChanges changes)

getChanges()
getChangeClass()
addChange(keyObject, objectChange)
isForClass(Class checkClass)

m_class

getObject()

m_object

getChanges()
getChanges(Class checkClass)
getClasses()
addChanges(checkClass, changes)
hasChanges()

Figure 2. DataModelClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-4 11/20/00

3.2.1.1.1 ChangeCollection (Class)

This class represents a collection of object changes. All object changes in the collection
must be for objects of the same type. Object type is determined by making the Java call
getClass(). This allows an observer to look at one object in the collection and determine if it
is interested in changes to this type of object. If the observer is not, it may ignore the entire
collection.

3.2.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.2.1.1.3 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.2.1.1.4 GUIUpdater (Class)

This class is used to send all changes to GUIModelObservers in the GUI event dispatch
thread. It does this by storing the changes until the dispatch thread calls the run() method.

3.2.1.1.5 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.2.1.1.6 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.2.1.1.7 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.2.1.1.8 ObjectRemoved (Class)

This class is used to indicate that the object it represents was removed from the DataModel.

R1B2 GUI Detailed Design Rev. 0 3-5 11/20/00

3.2.1.1.9 UpdateHint (Class)

This interface must be implemented by all objects that are to be used as update hints. An
update hint is a concept that is negotiated between a (subject) object and observers that are
interested in that object. The data model makes no assumptions about how the hints will be
used. The data model will invoke the isEqual method of the update hint to ask it to
determine if it is equivalent to another hint. This allows the model to perform update
optimizations by not sending notification to observers of two updates with equivalent hints
in the same period. An example of how an update hint would be used follows: A DMS
object has state variables that track the current message being displayed and the current
latitude and longitude location of the sign controller. Because the system map requires
significant processing load to redraw and needs only be notified if the latitude or longitude
of the DMS changes the DMS and map view use a DMSMapChange hint. When the DMS
object has a state change to the latitude or longitude property to report, that change is
reported by calling objectUpdated and passing a DMSMapChange hint. When it has other
changes that are not state changes to the latitude or longitude properties, it reports those
changes to the DataModel by calling objectUpdated passing a DMSNonMapChange update
hint. The map view will only redraw the DMS if the ObjectUpdate contains a
DMSMapChange hint.

3.2.1.1.10 ModelChange (Class)

This class is used to convey changes to observers of the DataModel. It contains all
ObjectChanges for a particular update priority level for a particular period of time.

3.2.1.1.11 ModelObserver (Class)

This interface must be implemented by any object that would need to attach to the
DataModel as an observer and get updated as system objects are added, deleted or changed.

3.2.1.1.12 ObjectAdded (Class)

This class is used to indicate that the object it represents was added to the DataModel.

3.2.1.1.13 ObjectChange (Class)

This class represents the changes to a particular object stored in the DataModel for a
particular period. The change may be that this object was added to the model, removed
from the model, or updated during this period.

R1B2 GUI Detailed Design Rev. 0 3-6 11/20/00

3.2.1.1.14 ObjectUpdated (Class)

This class indicates that an object that was already in the model has been updated. The
update may be specific to certain parts of the object, and the UpdateHint objects are used to
specify which data members within the object were changed. If there are no hints in the
ObjectUpdated, it signifies that the entire object has been changed so the observer must
query the object for any data members that it is displaying.

3.2.1.1.15 UpdatePriorityLevel (Class)

This class represents a particular priority update level. When an observer attaches to the
data model an update priority level is specified. The system currently supports five levels of
priority ranging from real time updates for animated displays to delayed updates for
windows which can tolerate not being notified for a significant period of time when a
change occurs to the system data model. Each time an object is modified it is added to the
ChangeCollection for all priority levels. The notification of observers simply happens at
longer and longer intervals as the priority level decreases. Thus, an observer of the data
model connected at real time may be updated three times in one second while a lower
priority observer may only be updated once at the end of the second. However, both
observers will be told about the exact same changes that occurred during the second.

R1B2 GUI Detailed Design Rev. 0 3-7 11/20/00

3.2.2 Sequence Diagrams

3.2.2.1 DataModel:AttachObserver (Sequence Diagram)

This diagram shows how an observer is attached to the DataModel for the purpose of
receiving updates. The DataModel’s attachObserver method is called, and if the priority
level is supported by the DataModel, the observer will be attached at that priority level. The
result of this is that the observer will be updated periodically (with the period depending on
the priority level) after changes are made to the objects through the DataModel.

UpdatePriorityLevel

See the diagram
DataModel:UpdateObservers
for a description of how
the observers are updated
on this thread once it is running.

attachObserver

First make sure the
observer is not attached to
any priority level.

(for each priority level)
detach

getPriorityLevel

attach

Observer
Attacher

Success

[priority level not found]
InvalidPriorityLevel

DataModel

Figure 3. DataModel:AttachObserver (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-8 11/20/00

3.2.2.2 DataModel:ObjectAdded_ (Sequence Diagram)

This diagram shows the steps taken when an object is added to the DataModel. First, the
Object and the Key are passed into the DataModel’s objectAdded method. The DataModel
checks whether the object was added before, and if so, the object will not be added again.
The DataModel then calls each of the PriorityLevel objects’ objectAdded methods so that
observers of all priority levels can be updated independently. The PriorityLevel object then
checks its ChangeCollection objects to see if a ChangeCollection exists for the class of
object which is being added. If not, it will create a ChangeCollection to store all changes for
that class. The PriorityLevel then creates an ObjectAdded object to represent the change,
then adds it to the ChangeCollection.

[* for each change collection
until matching class is found (or not)]

getClass

put

Object
Creator

put

Value object to be added
to the data model.

Key object to use for
subsequent lookups of
this value object.

previous value object with specified key

[* for each priority level]
objectAdded

ChangeCollection

ObjectAdded

create

objectAdded

getClass

DataModel

Object
(e.g. Identifier)

create

java.util.Hashtable

create Object

[no matching class found]
create

addChange

UpdatePriorityLevel

put

Figure 4. DataModel:ObjectAdded_ (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-9 11/20/00

3.2.2.3 DataModel:ObjectRemoved (Sequence Diagram)

This diagram shows what happens when an object is removed from the DataModel. The
Key object is passed into the DataModel’s objectRemoved method, which removes the
stored object in the DataModel. If the object was removed (i.e., if it was found), the
DataModel then calls the objectRemoved method for each UpdatePriorityLevel so that each
priority level of observers will be updated independently. The UpdatePriorityLevel will
check to see if it has a ChangeCollection to store changes for the class of the object. It will
create a new ChangeCollection if necessary. The UpdatePriorityLevel will then create an
ObjectRemoved object to represent the change. This object will be added to the
ChangeCollection for the object’s class. Java’s garbage collection ensures that the object
will not actually be deleted until the last reference to the object is removed; therefore, since
object references are stored in the ChangeCollection objects, each object will exist at least
until the last observer is updated on the lowest priority level. Observers have the
responsibility to remove all of their references to the objects when their update method is
called; otherwise, memory leaks will occur.

[no matching class found]
create

hashCode

[object not found]
false

[* for each priority level]
objectRemoved

[* for each change collection
until matching class is found (or not)]

getClass

getClass

create

addChange

Key Object
(e.g. Identifier)

put
hashCode

UpdatePriorityLevelDataModelObject
Remover

java.util.HashtableChangeCollection

ObjectRemoved

Stored
Object

(e.g. Identifiable)

create

objectRemoved

remove

equals

Figure 5. DataModel:ObjectRemoved (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-10 11/20/00

3.2.2.4 DataModel:ObjectUpdated (Sequence Diagram)

This diagram shows what happens when an object is updated through the DataModel. The
caller passes in the Key object and an optional UpdateHint object. If an object is found with
the Key, the DataModel will then call each UpdatePriorityLevel’s objectUpdated method so
that each priority level will be updated independently. The UpdatePriorityLevel checks to
see if a ChangeCollection exists for the class of object that is being changed, and a
ChangeCollection will be created if necessary. If there is a previous change for the object
and the existing change is ObjectRemoved or ObjectAdded, the update will be ignored.
Otherwise, the update hint will be combined with the existing update hints (if any) so that
the resulting hints are a union of all hints which have been accumulated. The changes will
be distributed to the observers when the next period expires for the UpdatePriorityLevel.

[ObjectUpdated change
already exists]

numHints

[* for each priority level]
objectUpdated

get
hashCode

[* for each change collection
until matching class is found (or not)]

getClass

[ObjectUpdated created]
addChange

Object
Updater

Key Object
(e.g. Identifier)

UpdatePriorityLevel java.util.HashtableChangeCollectionObjectUpdated

[ObjectUpdated already
existed and new UpdateHint

is not null]
addHint

[ObjectUpdated change already exists
but contains no hints]

return

[ObjectUpdated already
existed but new UpdateHint

 is null]
removeAllHints

objectUpdated

UpdateHintcreate

equals

getClass

[ObjectAdded change already exists]
return

[ObjectRemoved change
already exists]

return

DataModel

create

[object not found]
false

[no matching class found]
create

[matching class found]
getChange

Stored
Object

(e.g. Identifiable)

[change does not
already exist]

create

put
hashCode

Figure 6. DataModel:ObjectUpdated (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-11 11/20/00

3.2.2.5 DataModel:UpdateObservers (Sequence Diagram)

This diagram shows how the observers are updated after changes have occurred to objects
through the DataModel. The UpdatePriorityLevel thread decides that it’s time to update the
observers because the period has run out. It adds all of the changes that have been
accumulated in the ChangeCollections and stores them in a ModelChange object. Then it
distributes the ModelChange to all observers. If the observer is not a GUIObserver, it is
updated on the UpdatePriorityLevel thread. However, GUIObservers must be updated on
the main event thread, so the SwingUtility’s invokeLater method is called to execute the
update on the main event thread. After all observers are updated, the ChangeCollections are
deleted to flush them. The UpdatePriorityLevel will then sleep until the next scheduled
update.

ModelChange

ModelObserver

create

addChanges

[If not GUIModelObserver]
update

DataModel

java.lang.Thread

sleep

UpdatePriorityLevel

This will execute the
following loop until the
program shuts down.
The timing of the execution
of the loop depends on what
time period is associated with
the priority level.

GUIModelObserver

GUIUpdater

javax.Swing.
SwingUtilities

This will be executed
sometime later on the
main event dispatching
thread to eliminate
problems with updating
windows.

Double-nested
loop (for each
change collection,
for each observer)

run

[if GUI observer]
create

invokeLater

update

Remove
All

Change
Collections

run

Figure 7. DataModel:UpdateObservers (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-12 11/20/00

3.3 DataTransfer

3.3.1 Class Diagrams

3.3.1.1 DataTransferClasses (Class Diagram)

Droppable

allowDrop(int, Object[]) : int
handleDrop(int, Object[]) : int

Figure 8. DataTransferClasses (Class Diagram)

3.3.1.1.1 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

R1B2 GUI Detailed Design Rev. 0 3-13 11/20/00

3.4 DMSUtility

3.4.1 Class Diagrams

3.4.1.1 DMSUtility (Class Diagram)

This Class Diagram shows classes related to the DMS that are used by both the GUI and the
DMS service. Most of these classes are implementations of value type classes defined in the
system interfaces (IDL).

FP9500Status

Chart2DMSStatus

Chart2DMSConfiguration

DMSRPIData DMSPlanItemData

Chart2DMSStatusImpl
Chart2DMSConfigurationImpl

DMSRPIDataImpl
DMSPlanItemDataImpl

DMSMessage

DictionaryWrapper

DMSMessageImpl
1 1

FP9500Configuration

Dictionary 1*

FP9500ConfigurationImpl

Message

DMSStatus DMSConfiguration

FP9500StatusImpl

factory createChart2DMSConfiguration() : Chart2DMSConfiguration

long m_fmsDeviceID
Identifier m_owningOrgID
string m_agentHostName
string m_SNMPCommunityName
long m_pollInterval
long m_pollCycleDuration
string m_devicePhoneNumber
string m_deviceCommString
DeviceModelID m_deviceModelID
long m_deviceDropAddress
long m_deviceResponseTimeout
string m_deviceMaxBaudRate
DMSMessage m_shazamMessage

getDMS() : Chart2DMS
getMessage() : DMSMessage
setDMS(Chart2DMS) : void
setMessage(DMSMessage) : void
factory create DMSRPIData() :
 DMSRPIData

Chart2DMS m_dms
DMSMessage m_message

getDMSID() : Identifier
setDMS(DMS) : void
getMessageID Identifier
setMessage (StoredMessage) : void

DMS m_dms
Identifier m_dmsID
StoredMessage m_storedMessage
Identifier m_storedMsgID

getBeaconState() : octet
getMultiString() : MULTIString
getMinimumCharacters() : long
factory createDMSMessage(MULTIString multiStringMessage,
 octet beaconState) : DMSMessage

octet m_dmsMessageBeacon
MULTIString m_dmsMessageMultiString

get():DictionaryWrapper
setWrapperSettings(ORB, CosTrading.Lookup):void
setMinimumRediscoveryPeriod(long seconds):void

getBannedWords(AccessToken):WordList
removeBannedWordList(AccessToken,WordList):void
addBannedWordList(AccessToken,WordList):void
checkForBannedWords(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):WordList
getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedWordList(AccessToken, WordList):void
performApprovedWordsCheck(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):SuggestionList
-DictionaryWrapper():DictionaryWrapper
-getDictionary():Dictionary

-CosTrading.Lookup m_trader
-ORB m_orb
-java.util.Vector m_dictionaries
-java.lang.Object m_lock
long m_lastTraderLookupTimestamp

factory createFP9500Status() : FP9500Status

octet m_currentMsgNum
octet m_currentMsgSource

factory createChart2DMSStatus() : Chart2DMSStatus

Identifier m_controllingOpCenterID
string m_controllingOpCenterName
NetworkConnectionSite m_NetworkConnectionSite

validateMessageContent():void;

Figure 9. DMSUtility (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-14 11/20/00

3.4.1.1.1 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to Chart II
processing. Such information includes how to contact the sign under Chart II software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.4.1.1.2 Chart2DMSConfigurationImpl (Class)

The Chart2DMSConfigurationImpl class provides an implementation for the abstract
Chart2DMSConfiguration class. It implements get and set methods to access and modify
values of the configuration of a DMS. The configuration information stored here is
normally fairly static: things like the size of the sign in characters and pixels, its name and
location, and how to contact the sign (as opposed to dynamic information like the current
message on the sign, which is stored in an analogous Status object).

3.4.1.1.3 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to Chart II processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.4.1.1.4 Chart2DMSStatusImpl (Class)

The Chart2DMSStatusImpl class provides an implementation for the abstract
Chart2DMSStatus class. It implements get and set methods to access and modify values of
the status of a DMS. The status information stored here is relatively dynamic: things like
the current message on the sign, its beacon state, its current operational mode (online,
offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or
HARDWARE_FAILURE) and controlling operations center. (More static information
about the sign, such as its size and location, is stored in an analogous Configuration object.)

R1B2 GUI Detailed Design Rev. 0 3-15 11/20/00

3.4.1.1.5 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerance by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.4.1.1.6 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It
consists of two elements: a MULTI-formatted message and beacon state information
(whether the message requires that the beacons be on). The DMSMessage is contained
within a DMSStatus object, used to communicate the current message on a sign, and is
stored within a DMSRPIData object, used to specify the message that should be on a sign
when the response plan item is executed.

3.4.1.1.7 DMSMessageImpl (Class)

The DMSMessageImpl class provides an implementation for the abstract DMSMessage
class. It implements get and set methods to access and modify the MULTI-formatted
message and beacon state values which make up a DMS message.

3.4.1.1.8 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanItemData.

3.4.1.1.9 DMSPlanItemDataImpl (Class)

The DMSPlanItemDataImpl class provides an implementation for the abstract
DMSPlanItemData class. It implements get and set methods to access and modify values
relative to a stored Plan Item for a DMS.

R1B2 GUI Detailed Design Rev. 0 3-16 11/20/00

3.4.1.1.10 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.4.1.1.11 DMSRPIDataImpl (Class)

The DMSRPIDataImpl class provides an implementation for the abstract DMSRPIData
class. It implements get and set methods to access and modify values relative to a Response
Plan Item for a DMS.

3.4.1.1.12 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
Chart2DMSConfiguration class to provide configuration information specific to an FP9500
model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a
specific brand and model of sign for manufacturer-specific configuration information.

3.4.1.1.13 FP9500ConfigurationImpl (Class)

The FP9500ConfigurationImpl class provides an implementation for the abstract
FP9500Configuration class. It implements get and set methods to access and modify values
specific to the static configuration of an FP9500 DMS. It is exemplary of potentially a
whole suite of subclasses specific to a specific brand and model of sign for manufacturer-
specific configuration information.

3.4.1.1.14 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the Chart2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the FP9500 model would include things like the current message number and
current message source, status bits, light status, pixel failure map, and so on.

3.4.1.1.15 FP9500StatusImpl (Class)

The FP9500StatusImpl class provides an implementation for the abstract FP9500Status
class. It implements get and set methods to access and modify values specific to the
dynamic status configuration of an FP9500 DMS. It is exemplary of potentially a whole
suite of subclasses specific to a specific brand and model of sign for manufacturer-specific
status information.

R1B2 GUI Detailed Design Rev. 0 3-17 11/20/00

3.4.1.1.16 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

R1B2 GUI Detailed Design Rev. 0 3-18 11/20/00

3.5 GUI

3.5.1 Class Diagrams

3.5.1.1 R1B2GUIClassDiagram (Class Diagram)

This class diagram depicts the core classes and interfaces necessary to provide an extensible
GUI application framework for future CHART II development. Included are details of
objects served from the GUI application, an installable module framework, a core data
model that provides the framework for window updates when objects change, and a
framework for system preference configuration.

11

0..21

0..1
1

1

1

11

1 1

1 1

0..1 1

*
ResponseParticipant

1
1

GUIOperationsCenter

OperationsCenter

GUIProfile

Profile

1

1

1 1

11

InstallableModule

CommandStatusHandler

1

*

1

CosEvent.
PushConsumer

GUIToolBar

DataModel

DiscoveryThread
java.lang.Runnable

EventConsumerGroup

UserLoginSession

GUINavigatorDriverUserLoginSessionImpl

GUI

java.awt.event.
ActionListener

NavigatorSupporter

IdentifierGenerator
1 1

FilterManager

getID()
getName() : String
getControlledResources() : SharedResource[]
getLoginSessions() : UserLoginSession[]
getNumLoggedInUsers() : int
loginUser(username, password) : UserLoginSessionImpl
logoutUser()
forceLogout(UserLoginSession)
getResponseParticipants() : ResponseParticipant[]
addResponseParticipant(ResponseParticipant)
removeResponseParticipant(ResponseParticipant)
responseParticipantAdded(ResponseParticipant)
responseParticipantRemoved(ResponseParticipant)

string m_name
ResponseParticipantType m_type

getProfileProperty(key) : String
getAllProperties() : Properties
setProfileProperties(properties)
deleteProfileProperties(String[])
cleanupResources()

addButton()
disableButton()
disableAllButtons()
enableButton()

CommandStatusHandler(datamodel)
createCommandStatus(description)

startup(orb)
discoverEventChannels(trader, eventConsumerGroup)
discoverObjects(trader, dataModel)
loggedIn()
loggedOut()
shutdown(orb)
getMenuItemReps(accessToken, Menuable[]) : MenuItemRep[]
handleCommand(actionEvent, Menuable[]) : boolean

shutdownDiscoveryThread()

startup()
getInstallableModules()
shutdown()
login()
logout()
getGUIOperationsCenter() : GUIOperationsCenter
getLoginSession()
getORB()
getPOA()
getEventConsumerGroup()
getTrader()
getToken()
getDataModel()
discoverEventChannels()
discoverEventChannelsOfName(name, PushConsumer)
discoverObjects()
makeMenu(Object[] selected, Component invoker) :
 JMenu
handleCommand(actionEvent, Menuable[] selected)
-changeUser()
getSystemProfile() : GUIProfile
getUserProfile() : GUIProfile
getCommandStatusHandler()
getToolBar()
openAudioSourceDataLine() : SourceDataLine
getAudioSourceDataLine() : SourceDataLine
closeAudioSourceDataLine() : void
getIdentifierGenerator() : IdentifierGenerator

m_opCenter

getOpCenter()
getUsername()
ping()
forceLogout()
getAccessToken()
setAccessToken()
getCORBAID()

m_accessToken

Figure 11. R1B2GUIClassDiagram (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-19 11/20/00

3.5.1.1.1 CommandStatusHandler (Class)

This class provides functionality that allows the modules to deal with CommandStatus
objects for calling asynchronous methods without performing the housekeeping associated
with serving these objects. It provides a method for creating a CommandStatus object
which will create the object, attach it to the ORB, add it to the data model, and observe the
data model waiting for the CommandStatus object to complete. When it completes, this
object will disconnect it from the ORB and remove it from the data model.

3.5.1.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.5.1.1.3 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that
they do not lose their connection to the CORBA event service. The class will periodically
ask each consumer to verify its connection to the event channel on which it is dependent to
receive events.

3.5.1.1.4 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.5.1.1.5 DiscoveryThread (Class)

This thread is used by the GUI to check for new event channels and served CORBA
objects. It will periodically call the GUI to find event channels and objects.

3.5.1.1.6 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

R1B2 GUI Detailed Design Rev. 0 3-20 11/20/00

3.5.1.1.7 GUINavigatorDriver (Class)

This class handles all of the Navigator-specific functionality for the GUI.

3.5.1.1.8 GUIOperationsCenter (Class)

This class is a GUI “wrapper” object that is used to wrap an OperationsCenter object. The
wrapping is done to cache the data locally for faster access, and to provide GUI-specific
functionalities to the wrapped object.

3.5.1.1.9 GUIToolBar (Class)

This class will hold all of the top-level buttons and will be the launching point for invoking
the functionality of the CHART2 system. It will be created at startup, and each module may
add any toolbar buttons at that time. At Login, modules that have added toolbar buttons at
startup should enable any toolbar buttons that should be enabled (depending on access
rights). The buttons will be disabled by the GUI after they are added at startup and again at
logout.

3.5.1.1.10 FilterManager (Class)

This class provides functionality for managing the filters in the system. As it deals with the
singleton GUI and the DataModel objects, it too will be a singleton object. The GUI will
create and hold the FilterManager. Filter supporters can be added to the FilterManager to
support the creation of supporter-specific filter types.

3.5.1.1.11 GUIProfile (Class)

This class is a wrapper for the Profile CORBA interface. It provides GUI-specific
functionality for the profile. A GUIProfile can represent either a system profile or a user
profile.

3.5.1.1.12 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.5.1.1.13 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

R1B2 GUI Detailed Design Rev. 0 3-21 11/20/00

3.5.1.1.14 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.5.1.1.15 NavigatorSupporter (Class)

This interface must be implemented by any subsystem that supports invoking the
Navigator. It must be able to supply the Navigable objects, and also can support user
interaction with the selected Navigable objects through menus and drag/drop.

3.5.1.1.16 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.5.1.1.17 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.5.1.1.18 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART II system behaves or presents information to a user.

3.5.1.1.19 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable
objects.

3.5.1.1.20 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

R1B2 GUI Detailed Design Rev. 0 3-22 11/20/00

3.5.1.1.21 UserLoginSessionImpl (Class)

This class is the implementation of the CORBA UserLoginSession interface. It will be
served from the GUI and will be passed to the OperationsCenter on login. It will also store
the access token returned from the OperationsCenter.

R1B2 GUI Detailed Design Rev. 0 3-23 11/20/00

3.5.1.2 MiscClasses (Class Diagram)

This diagram shows other classes that are used in the GUI, but are not part of the
fundamental framework of the GUI.

DefaultJFrame

java.awt.event.
ActionListener

MenuableMenuActionProxy

MenuItemRep

GUI

ModelObserver

StatusFrame

DataModel

StatusViewTableModel

GUIModelObserver

*1

1

1

1 1

*
1

11

1

javax.swing.
JFrame

javax.swing.table.
TableModel

CommandStatusHandler

Pollable

Poller

*

1

removes
completed

1

1

*

1

StatusViewable

CommandStatusImpl

CommandFailure

*1

CommandStatus

1

poll()

CommandStatusHandler(datamodel)
createCommandStatus(description)

startPolling(Pollable, millis, mainThread)
stopPolling(Pollable)

getStatusViewableDescription() : String
getStatusViewableStartTime() : Date
getStatusViewableStatus() :String
getStatusViewableLastUpdateTime() : Date
getStatusViewableIsFinal() : boolean

getID()
update()
completed()
getDescription()
getCreationTime()
getLastUpdateTime()
getLastStatusString()
hasCompleted()

m_description
m_creationTime
m_lastUpdateTime
m_lastStatusString
m_hasCompleted

update(String status):void
completed(String final_status)

getMSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]
getSSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

MenuActionProxy(Menuable[] selected)

MenuItemRep(String, boolean enabled)
isEnabled() : boolean
setEnabled(boolean) : void
getMenuItemString() : String

Figure 12. MiscClasses (Class Diagram)

3.5.1.2.1 CommandFailure (Class)

This object represents a failure of a command. It implements the StatusViewable interface
so that it can be displayed in the StatusFrame (i.e., the “Command Failures” window).

R1B2 GUI Detailed Design Rev. 0 3-24 11/20/00

3.5.1.2.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.5.1.2.3 CommandStatusImpl (Class)

This class is the implementation of the CommandStatus CORBA interface. It will be
created and passed to a server when a command is to be executed so that the GUI can stay
updated as the command is executing.

3.5.1.2.4 CommandStatusHandler (Class)

This class provides functionality that allows the modules to deal with CommandStatus
objects for calling asynchronous methods without performing the housekeeping associated
with serving these objects. It provides a method for creating a CommandStatus object
which will create the object, attach it to the ORB, add it to the data model, and observe the
data model waiting for the CommandStatus object to complete. When it completes, this
object will disconnect it from the ORB and remove it from the data model.

3.5.1.2.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects
which are notified when objects are added to or removed from the model. Objects may also
notify the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.5.1.2.6 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.5.1.2.7 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

R1B2 GUI Detailed Design Rev. 0 3-25 11/20/00

3.5.1.2.8 ModelObserver (Class)

This interface must be implemented by any object that may need to attach to the DataModel
as an observer and get updated as system objects are added, deleted or changed.

3.5.1.2.9 GUIModelObserver (Class)

Interface to be implemented by GUI components that may needd to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.5.1.2.10 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.5.1.2.11 javax.swing. JFrame (Class)

Java class that displays a frame window.

3.5.1.2.12 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.5.1.2.13 MenuActionProxy (Class)

This class catches the action performed by the menu item and stores the selected menuable
objects to act on.

3.5.1.2.14 MenuItemRep (Class)

This class is used by the Menuable objects when they are called to return their menu items.
It contains a flag indicating whether the menu item is to be disabled.

R1B2 GUI Detailed Design Rev. 0 3-26 11/20/00

3.5.1.2.15 javax.swing.table. TableModel (Class)

This class provides the data structure that drives the population and updating of the data
used by the JTable (a Java GUI component).

3.5.1.2.16 StatusViewable (Class)

This interface provides the functionality needed to add objects to the
StatusViewTableModel so that they can be displayed in the StatusFrame.

3.5.1.2.17 StatusViewTableModel (Class)

This class provides the data framework needed to populate and update the JTable that
displays the StatusViewable objects in the StatusFrame.

3.5.1.2.18 Pollable (Class)

This interface provides a method so that the Poller can periodically call the object to poll it.

3.5.1.2.19 Poller (Class)

This class will periodically call the poll() method for any Pollables for which polling has
been started. This happens either on the polling thread or on the AWT event thread, as
specified when the polling is started.

3.5.1.2.20 StatusFrame (Class)

This class is a window that displays the StatusViewable objects in a JTable. Currently the
“Command Status” and “Command Failures” windows are StatusFrames.

R1B2 GUI Detailed Design Rev. 0 3-27 11/20/00

3.5.2 Sequence Diagrams
3.5.2.1 GUI:ChangeUserBasic (Sequence Diagram)

This diagram shows the steps that will be taken in the GUI when a user change occurs
without first logging out. The new user will be logged in and the previous user will be
logged out, then all windows are closed and the new user’s preferences are loaded to
replace the previous preferences. If the changeUser command fails, the previous user will
still be logged in and the new user will not be logged in.

GUIUserManagementModule

setUserPreferences

destroy

getUserProfile

create
(new GUI user profile)

setAccessToken

shutdown

ProfileUserLoginSessionImpl OperationsCenter InstallableModule

changeUser

create
(new login session)

changeUser
[failure]

Display Error

[* for each module]
loggedOut

Close Windows

[* for each module]
loggedIn

GUIProfile

delete
(previous login session)

Operator
GUI

Figure 13. GUI:ChangeUserBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-28 11/20/00

3.5.2.2 GUI:CommandObjectBasic (Sequence Diagram)

This diagram shows the basic steps involved in issuing a typical command to an object. The
context menu is built when the user right clicks on one or more selected objects. At this
time the GUI wrapper object will be added as an ActionListener and will receive the
command if any of its menu items are clicked on. (See the sequence diagrams
GUI:MakeMenuSingleSelect and GUI:MakeMenuMultipleSelect for more details). If a
long-running command is invoked, the object will create a CommandStatusImpl object, put
it in the DataModel, and pass it to the server so that the server can call back as the
command is completed. When the server calls the CommandStatusImpl’s completed()
method, the CommandStatusImpl will remove itself from the DataModel. If the command
fails, the Command Failures window will add the command status to its displayed list.

DataModel

update

getToken

See GUI:EventUpdatePushedBasic
for a description of how the
asynchronous command will
update data will be processed.

update

update

update

The command
failure view
will ignore all
updates except
ones that show
command failures.

See the sequence diagrams:
GUI:MakeMenuSingleSelect
GUI:MakeMenuMultipleSelect
GUI:MakeMenuNoneSelected

command queued or error

[context menu
invoked]

makeMenu

(select objects)

The Menuable object was
added as an action
listener when the
menu was made.

update

ORB

connect (CommandStatusImpl)

Command
Failure
ViewCommandStatusView

update() will be
called some time
later than the
DataModel
is called.

Object
Service

GUI

getDataModel

Menuable

Operator

CommandStatusImpl

Served
CORBA
Object

objectRemoved

completed

objectUpdated

update

update

create

objectAdded

Call The Asynchronous Command

command queued or error

[a command menu
item was clicked]
actionPerformed

Figure 14. GUI:CommandObjectBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-29 11/20/00

3.5.2.3 GUI:DiscoveryBasic (Sequence Diagram)

This diagram shows the ongoing discovery of event channels and served CORBA objects.
In the GUI’s startup, it will start the DiscoveryThread, which will periodically search for
new event channels and objects until the GUI shuts down. The event channels are
discovered before the objects to prevent the dropping of events just after the objects are
discovered. First, the GUI looks for resource watchdog event channels, which will inform
the user if resources are controlled by an Operations Center which does not have any
logged in users, then it asks the modules to look for the module-specific event channels. If
any event channels are found, they are added to the EventConsumerGroup, which will
maintain the connection to the event channel if the event service goes down and is restarted.
The GUI will then ask each module to discover the objects that it is interested in. Each
module will look up the object factory in the trader, and ask the object factory for all of its
objects. Then, the module will check whether the CORBA object already has a GUI
wrapper object stored in the DataModel. If it doesn’t, it will create a new wrapper object
and add it to the DataModel. Any ModelObservers that are attached to the DataModel will
be subsequently informed of the new wrapper objects.

PortableServer.

POA
CosEvent.

PushConsumer

[module-specific PushConsumer not already created]
create[PushConsumer created]

getPOA
[PushConsumer created]

activate_objectdiscoverEventChannelsOfName

[* for each object
returned from factory

[*for each event
channel returned

from query]

The factories are
retrieved (rather than
each object) to reduce
network timeouts if the
objects are in the
trader but the server
is down.

served
CORBA
object DataModel

[* for each object factory]
Get Objects

getObject

getDataModel

create

[* for each watchdog event channel]
add

[* for each module]
discoverEventChannels

Module-specific
CORBA object

factory

add

[* for each module]
discoverObjects query (module-specific

object factories)

query (event channels of the specified name)

Get Initialization
Data

The discovery thread
will periodically execute
the following logic in a loop.
The timing of the loop may
 be configurable through
the system preferences.

GUI
DiscoveryThread GUI

CosTrading.
Lookup

Push
Event

Consumer

InstallableModule
implementing class

Event
Consumer

Group

start

discoverEventChannels
query (resource watchdog event channels)

[* for each resource watchdog event channel]
create

discoverObjects

Test whether a GUI wrapper
object already exists in the
data model to avoid
unnecessary initialization
calls across the network.

GUI
CORBA object

wrapper
[wrapper not found in DataModel]

create

objectAdded

Figure 15. GUI:DiscoveryBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-30 11/20/00

3.5.2.4 GUI:EventUpdatePushedBasic (Sequence Diagram)

This diagram shows how updates to the served CORBA objects propagate to the GUI
windows. The server will push the event data to the event service. The CORBA event
service will then push the event data to the PushConsumer (which would typically be the
GUI or an InstallableModule). The event data must contain some identification data so that
the GUI wrapper object can be looked up in the DataModel. After the PushConsumer
retrieves the GUI wrapper object from the DataModel, it will update any relevant data
within the object and will call the DataModel one or more times with update hints to
indicate what part of the object’s data changed. The DataModel will accumulate all of the
update hints for some short time period until it distributes them to all of the attached
ModelObservers (which would typically be windows displaying the object data).

update

objectUpdated

ModelObserver
implementing class

push (update data)
getDataModel

getObject

Update
Object

Wrapper

This represents
any view(s)
displaying the
object's data.
They must have
attached to the
DataModel to receive
the updates.

DataModel

GUI
CORBA object

wrapper

The update
data must contain
some sort of identification
tag so that the object
can be looked up.

The update will happen sometime
later on the appropriate data model
update thread.

GUICORBA
Event

Service

CosEvent.PushConsumer
implementing class

Figure 16. GUI:EventUpdatePushedBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-31 11/20/00

3.5.2.5 GUI:LoginBasic (Sequence Diagram)

This diagram shows what steps must be taken at login. The GUI creates a
UserLoginSessionImpl and passes it to the OperationsCenter for login. The GUI will then
store the AccessToken in the UserLoginSessionImpl for later use. The GUI then enables the
basic buttons on the GUI toolbar. Then it creates the GUIProfile wrappers for the system
and user Profiles, and it initializes the system and user Navigator filters. Then the GUI calls
each InstallableModule to allow them to handle post-login processing.

UserManager

GUIProfile (System)

GUIProfile (User)

getSystemProfile

create

getUserProfile

create

InstallableModule
Operator

GUI OperationsCenter

login
create

loginUser

setAccessToken

[failure]
delete

[* for each module]
loggedIn

[failure]
display error

UserLoginSessionImpl

"Enable The Basic
GUI Buttons Except

Login"

FilterManager

initializeSystemFilters
initializeUserFilters

Figure 17. GUI:LoginBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-32 11/20/00

3.5.2.6 GUI:LogoutBasic (Sequence Diagram)

This diagram shows what processing happens when the user logs out. The GUI calls the
GUIOperationsCenter, which in turn calls the OperationsCenter object. If any shared
resources are still assigned to the Op Center and the user logging out is the last user at the
Op Center, the logout will fail and the user will need to transfer the shared resources to
another Op Center. In this case a dialog will be displayed. If the logout is successful, the
GUI will call each installable module’s loggedOut() method. Then it will close all windows
and disable the toolbar buttons, deactivate the UserLoginSessionImpl, and clean up the
system and user Navigator filters and GUIProfile objects.

"Return From loggedOut"

"Return From logoutUser"

onLogout

Operator
GUI InstallableModule

PortableServer.
POAGUIOperationsCenter OperationsCenter

UserLogin
SessionImpl GUIProfileFilterManager

[clicks on Logout button]
actionPerformed

[user logged in]
logoutUser logoutUser

[last user to log out and op ctr
is controlling resources]

HasControlledResources

[logout failure]
LogoutFailure

[controlled resources]
"Display Transfer

Resources Dialog"

[has controlled
resources]

[LogoutFailure]
GUIException

[resources error]
HasControlledResources

[successful logout]
loggedOut

[other error aside from
HasControlledResources]
"Display Error To User"

[error]

[* for each installable module]
loggedOut

"Close All Windows
Except Toobar And

Save Window Positions"

"Disable All Toolbar
Buttons Except Login And Exit"

getCORBAID

deactivate_object (UserLoginSessionImpl)

cleanupUserFilters

cleanupSystemFilters

cleanupResources (User Profile)

cleanupResources (System Profile)

Figure 18. GUI:LogoutBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-33 11/20/00

3.5.2.7 GUI:MakeMenuMultipleSelect (Sequence Diagram)

This diagram shows how a menu is created when two or more GUI wrapper objects are
selected. The GUI’s makeMenu method determines that there are multiple objects selected,
and it creates a BucketSet that it will use to count the menu items. Then it asks each
selected object to supply the multiple-selection menu item reps. If the user does not have
sufficient rights, those menu items will be grayed out. The menu item strings are put into
the BucketSet and then retrieved. The only reps that are retrieved from the BucketSet are
those which have the same number of instances as there are selected objects. The GUI then
creates menu items for the reps and attaches a new MenuActionProxy as an ActionListener
to each representative menu item.

[user clicked on menu item]
actionPerformed

handleCommand

add

[* for each
rep returned

from the
bucket set]

repeat

create

getMenuItemReps

create

create

create

[any matching menu reps
are disabled]

setEnabled(false)

isEnabled

[any of the selected
objects are not Menuable]

return

create

create
[* for each item rep]

add

[operator invokes
context menu with

multiple objects selected]
Invoke Menu makeMenu

javax.swing.JMenuItem
or

java.awt.MenuItem

BucketSet

Operator

[* for each selected
Menuable object]

getMSMenuItemReps

Menu or
JMenu

InstallableModule

MenuItemRep

setEnabled

[not handled
by a module]

[* for each selected
object]

actionPerformed

[* for each module]
handleCommand

Display Menu

getElements

GUI Menuable

MenuActionProxy

Any
GUI
View

addActionListener(proxy)

Figure 19. GUI:MakeMenuMultipleSelect (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-34 11/20/00

3.5.2.8 GUI:MakeMenuNoneSelected (Sequence Diagram)

This diagram shows how a menu is created when no GUI wrapper objects are selected. The
GUI’s makeMenu method determines that there are no objects selected, and the GUI then
adds its own global menu items and calls each module to get their menu item reps. The GUI
then creates a MenuActionProxy and attaches it as an ActionListener to the menu items so
that it will be called when the user clicks on the menu items. If the user does not have rights
to perform the action associated with a menu item, it will be grayed out.

Any
GUI
View

[* for each module]
getMenuItemReps

[* for each system menu item]
create

[operator invokes
context menu

with no objects selected]
Invoke Menu JMenu or

Menucreate

add

Display Menu

makeMenu

javax.swing.JMenuItem
or

java.awt.MenuItem

GUI

[* for each
menu item]

repeat

[user clicks on a menu item]
actionPerformed

handleCommand
[* for each module]
handleCommand

InstallableModule

[*for each menu item]
create

MenuActionProxy

MenuItemRep

create

isEnabled

setEnabled

create

addActionListener(proxy)

The access token
is used to restrict
the user's actions,
if applicable, depending
on the users' rights. If
the user does not have
rights, the menu items
will be grayed out.

Operator

Figure 20. GUI:MakeMenuNoneSelected (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-35 11/20/00

3.5.2.9 GUI:MakeMenuSingleSelect (Sequence Diagram)

This diagram shows how a menu is created when exactly one GUI wrapper object is
selected. The GUI’s makeMenu method determines that there is one object selected, and it
asks the Menuable object for the single-select menu item strings. The GUI will then create
all of the menu items and attach a new MenuActionProxy as the ActionListener to each of
the menu items.

Display Menu

InstallableModule

MenuItemRep

MenuActionProxy

Menu
or

JMenu

[* for each module]
getMenuItemReps

[* for each menu item]
create

[* for each menu item]
create

create

isEnabled

setEnabled(false)

[* for each
menu item]

repeat

create

add

[user clicked on menu item]
actionPerformed

handleCommand

handleCommand

GUI Menuable

javax.swing.JMenuItem
or

java.awt.MenuItem

[operator invokes
context menu with

one object selected]
makeMenu

[implements Menuable]
getSSMenuItemReps

[not handled by a module]
actionPerformed

Any
GUI
View

create

addActionListener(proxy)

Figure 21. GUI:MakeMenuSingleSelect (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-36 11/20/00

3.5.2.10 GUI:ShutdownBasic (Sequence Diagram)

This diagram shows steps necessary for a shutdown. The operator either closes the
GUIToolBar or clicks on the Exit button. Either of these actions will result in the GUI’s
shutdown method being called. If the user is logged in, he or she will be logged out. If this
happens, the GUI calls the GUIOperationsCenter, which in turn calls the OperationsCenter
object. If any shared resources are still assigned to the Op Center and the user logging out is
the last user at the Op Center, the logout will fail and the user will need to transfer the
shared resources to another Op Center. In this case a dialog will be displayed. If the logout
is successful, the GUI will call each installable module’s loggedOut() method. Then it will
close all windows and disable the toolbar buttons, deactivate the UserLoginSessionImpl,
and clean up the system and user Navigator filters and GUIProfile objects. Once the user is
logged out, the GUI shuts down the discovery thread and informs all of the modules that the
GUI is being shut down. Finally, the GUI process exits.

"Return From logoutUser"

"Save The ToolBar
Window Position"

GUIOperationsCenter OperationsCenter
UserLogin

SessionImpl GUIProfile

"Exit GUI Process"

[user logged in]
logoutUser logoutUser

[last user to log out and op ctr
is controlling resources]

HasControlledResources

[logout failure]
LogoutFailure

closeWindow

[controlled resources]
"Display Transfer

Resources Dialog"

[has controlled
resources]

[LogoutFailure]
GUIException

[resources error]
HasControlledResources

[has controlled
resources]

[successful logout]
loggedOut

[other error]
"Display Dialog To
Allow User To Exit"

[other error
and user chooses

to not exit]
[other error

and user chooses
to not exit]

[* for each installable module]
loggedOut

"Close All Windows
Except Toobar And

Save Window Positions"

"Disable All Toolbar
Buttons Except Login And Exit"

getCORBAID

"Return From loggedOut"

FilterManager

deactivate_object (UserLoginSessionImpl)

cleanupUserFilters

cleanupResources (User Profile)

cleanupResources (System Profile)

GUI InstallableModule

shutdown

[* for each module]
shutdown

shutdownDiscoveryThread

PortableServer.
POA DiscoveryThread

Operator
GUIToolBar

Either of these
actions will
initiate shutdown.

[closes window]
closeWindow

[clicks on Exit]
actionPerformed

cleanupSystemFilters

Figure 22. GUI:ShutdownBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-37 11/20/00

3.5.2.11 GUI:StartupBasic (Sequence Diagram)

When the GUI application is started, it first performs CORBA initialization: it initializes the
CORBA ORB and creates the root POA and the persistent POA, and activates the POA
Manager. Then it creates a GUIStartupCommand object, which is passed off to Java to
execute at a later time on Java’s AWT event thread. The ORB’s run() method is called,
which blocks the application’s main thread. Java then invokes the GUIStartupCommand,
which creates and initializes the GUI. During startup(), the GUI is activated in the POA so
that it can receive CORBA events for the ResourceManagement events. It also loads the
names of the InstallableModules to install from the system properties file, and proceeds to
instantiate all of the installable modules based on the class name of each module. The GUI
then looks for the CORBA Trading Service, and queries the OperationsCenter object with
the name specified in the system properties file. It also queries the UserManager object
from the Trading Service. If all of this is successful, the GUI’s toolbar is created and the
buttons are added. Each module’s startup() method is called, at which time the modules can
add toolbar buttons of their own. Then the DiscoveryThread is started, which will
periodically look for new event channels and objects in the Trading Service.

POA POAManager

javax.swing.
SwingUtilities

GUIStartup
Command

Poller

FilterManager

[starts GUI]
main

init
resolve_initial_references

(Root POA)

create_POA (Persistent POA)

the_POAManager
activate

[error]
create

invokeLater

run

create

[error]
"Log Error and Exit GUI Process"

startup

run

activate_object

create

"Read System Properties File"

The GUI must
activate itself
with the POA
because it is also
a PushConsumer
and it will listen
for Unhandled
Resource
events.

Command
Status
Handler

GUISystemProperties

DataModel

Event
Consumer

Group

[Trading Service
not found]

"Display Retry
Dialog"

[* while
Trader not
found and

user
chooses
to retry]

getDiscoveryPeriodString
create

"Return from startup" start

java.lang.
Class

InstallableModule

This will instantiate
the specific type of
InstallableModule
implementing object
based on the specified
class name.

create

create

Operator
GUI ORB

Two POA objects are created::
A root POA (which assigns CORBA
IDs for the application), and a
persistent POA which accepts the
application IDs.

This is a
synchronous
(blocking)
call to the ORB
and will tie up
the main thread
until the
application exits.

The asynchronous
invocation of the
GUIStartupCommand
object on Java's AWT
event thread allows
us to bypass the
ORB's run() method
being a blocking call.
It is also necessary
for thread-safe
interaction between
the GUI startup code
and the GUI
components such
as the toolbar.

DiscoveryThread

[* for each
module

name found
in System
Properties

file]

getOpCenterName
query (Operations Center)

create

objectAdded
getEligible
Response

Participants

query (User Manager)

create

[* for each initial
toolbar button]

addButton [* for each InstallableModule]
startup

[* for each
subsequent

toolbar button]
addButton

"Enable Login
And Exit
Buttons"

create

CosTrading.
Lookup

GUIOperations
Center

OperationsCenter

GUIToolbar

Installable modules will
add their toolbar buttons
here.

create

create

start

getModuleNames

forName

newInstance
create

resolve_initial_references
(Trading Service)

Figure 23. GUI:StartupBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-38 11/20/00

3.5.2.12 GUI:SystemCommandBasic (Sequence Diagram)

This diagram shows how a system command is handled. A system command is one which
does not apply to any served CORBA objects. (For those commands, see the
GUI:CommandObjectBasic diagram). First, a context menu is invoked by the user when
there are no objects selected (see the GUI:MakeMenuNoneSelected for details on how the
menu is made). The GUI, or an InstallableModule, will be attached to the menu items as an
ActionListener when the menu is built. When the user clicks on the menu item, Java will
invoke the actionPerformed() method of the ActionListener implementing class, which will
allow the ActionListener to execute the command.

See the sequence diagram:

GUI:MakeMenuNoneSelected

GUI java.lang.ActionListener

Operator

[a menu item
was clicked on]
actionPerformed

[context menu
invoked with
no objects
selected]

makeMenu

This may be either
the GUI or an
InstallableModule

The listener
was attached
when the menu
was made.

Perform
Action

Figure 24. GUI:SystemCommandBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-39 11/20/00

3.6 GUIDMSModule

3.6.1 Class Diagrams

3.6.1.1 DMSDialogs (Class Diagram)

This diagram shows all of the classes representing GUI windows that exist within the
GUIDMSModule.

GeneralPropertiesControl DisplayPropertiesControl FieldCommsPropertiesControl HardwareStatusControlPixelStatusControl

1

*

1

*

DefaultJFrame

java.awt.event.
KeyListener

java.awt.event.
ActionListener

DMSMessageEditorDMSStoredMsgItemPropertiesDialog FP9500PropertiesDialog DefaultDMSPropertiesDialog

JComponent

Figure 25. DMSDialogs (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-40 11/20/00

3.6.1.1.1 DefaultDMSPropertiesDialog (Class)

This dialog is used to view and edit the DMS properties of those models that support a
standard set of DMS operational parameters and status information. It uses the control
classes derived from JComponent for formatting, display and user editing features.

3.6.1.1.2 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.6.1.1.3 DMSMessageEditor (Class)

This class is responsible for allowing an operator to set the current message on a DMS. It
also updates a MessageView to allow the operator to preview the message, as it will look
on the selected sign, prior to sending the message to the sign controller.

3.6.1.1.4 DMSStoredMsgItemPropertiesDialog (Class)

This dialog is used for creation, viewing and editing of the properties of
DMSStoredMsgItem and GUIDMSStoredMsgItem objects.

3.6.1.1.5 FP9500PropertiesDialog (Class)

This dialog is used to view and edit the FP9500 DMS configuration information. It also
allows the FP9500 DMS extended status information to be viewed. It delegates the
formatting, display and user editing functions to the classes derived from JComponent like
GeneralPropertiesControl, PixelStatusControl and other control classes. The control classes
used by this class depend on the configuration and status information supported by the
FP9500 DMS model.

3.6.1.1.6 DisplayPropertiesControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS display
Properties and allows the user to edit these properties. Some examples of DMS display
properties are sign height, sign width, character height and character width.

3.6.1.1.7 FieldCommsPropertiesControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS field
communication properties and allows the user to edit these properties. Some examples of
DMS field communication properties are DMS phone number and comm loss time.

R1B2 GUI Detailed Design Rev. 0 3-41 11/20/00

3.6.1.1.8 GeneralPropertiesControl (Class)

This class is derived from JComponent and is capable of graphical display of general DMS
Properties and allows the user to edit these properties. Some examples of general DMS
properties are DMS name, DMS type and DMS location.

3.6.1.1.9 HardwareStatusControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS
controller status. It does not allow the user to edit the information displayed.

3.6.1.1.10 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.6.1.1.11 java.awt.event. KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.6.1.1.12 PixelStatusControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS Pixel
status. It does not allow the user to edit the information displayed.

3.6.1.1.13 JComponent (Class)

This is a Java Swing base class that may be derived by any class having a graphical
representation that can be displayed on the screen and that can interact with the user.

R1B2 GUI Detailed Design Rev. 0 3-42 11/20/00

3.6.1.2 DMSModuleArchitecture (Class Diagram)

This diagram shows the data hierarchy of the GUIDMSModule and the objects that it
supports. The GUIDMSModule:NavigatorSupport class diagram shows how these objects
are laid out on the GUI navigator.

GUIFP9500ModelSupporterGUIDefaultDMSModelSupporter

GUIDMSModelSupporter*

1

1

1
*

GUIDMS

DataModel
DMSNavGroup

*

1

GUIFP9500 GUIDefaultDMS

* 1

1

1

*

1

1

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1
1 1

*

*

GUILibrarySupporter

Chart2DMS

GUIHARMessageNotifier

ResponseDataCreator

DMSFactory

GUI

CosEvent.
PushConsumer

GUITrafficEventHolder

GUIPlan

StoredMessage

GUIStoredMessage

GUIPlanItem

GUIResponsePlanItem

PlanItemCreationSupporter

GUIResponsePlanItemCreator

GUIDMSResponsePlanItem GUIDMSStoredMessage

ResponsePlanItem

GUIMessageLibrary

GUIDMSStoredMsgItem

InstallableModule

GUIDMSModule

1 1

1

createGUIStoredMessage(StoredMessage, Message) : GUIStoredMessage
getStoredMessageCreationMenuReps(accessToken) : MenuItemRep[]
createNewGUIStoredMessage(accessToken, menuString, guiLibrary) : boolean
createLibraryType():LibraryType

setAssociatedHAR(har)
getAssociatedHAR() : GUIHAR
isHARNoticeActive() : boolean
getNotifier() : HARMessageNotifier

push

createGUIDMSModel(dms, dmsID):GUIDMS
createNewGUIDMSModel(token, menuString):bool
getDMSCreationMenuReps(token):MenuItemRep[]

get()
addDMS()
getDictionary()
getLibraryNavGroup()
getDMSNavGroup()
getFonts()
getGeometries()

getPlanItemCreationMenuReps(accessToken) : MenuItemRep[]
createGUIPlanItem(planItem, itemID, plan) : GUIPlanItem
createNewGUIPlanItem(accessToken, menuString, plan) : boolean

createGUIResponsePlanItem(Identifier, name,
 ResponsePlanItemData) : GUIResponsePlanItem
createGUIResponsePlanItem(ResponsePlanItem) :
 GUIResponsePlanItem

remove
execute getID()

remove()
doProperties()
setMessage()
getMessageContent

startup(orb)
discoverEventChannels(trader, eventConsumerGroup)
discoverObjects(trader, dataModel)
loggedIn()
loggedOut()
shutdown(orb)
getMenuItemReps(accessToken, Menuable[]) : MenuItemRep[]
handleCommand(actionEvent, Menuable[]) : boolean

Figure 26. DMSModuleArchitecture (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-43 11/20/00

3.6.1.2.1 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to
be used in manipulating the Chart II-specific DMS objects within Chart II. It provides a
method for getting the DMSArbitrationQueue for a Chart II DMS, which can then be used
by traffic events to provide input as to what each traffic event desires to be on the sign. It
also provides a method to perform testing on a sign. This method can be extended by
derived classes for specific models of signs, which know how to perform certain types of
testing on their specific model of sign. Chart II business rules include concepts such as
shared resources, arbitration queues, and linking devices usage to traffic events, concepts
which go beyond what would be industry-standard DMS control.

3.6.1.2.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.6.1.2.3 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
Chart II system. It also provides a method to get a list of DMS devices currently in the
system.

3.6.1.2.4 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.6.1.2.5 GUIDMSModule (Class)

The GUIDMSModule is an installable module in the GUI that handles all of the DMS
specific functionality. Only one GUIDMSModule object may exist within the GUI. This
class implements the interfaces to support the frameworks of the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule. It handles the creation of model
specific GUI DMS objects using the model supporters.

3.6.1.2.6 GUIHARMessageNotifier (Class)

This interface is similar to the HARMessageNotifier interface in that it is implemented by
all of the message notifier classes, but this interface is specific to the GUIHARModule and
its usage of the GUI wrapper objects.

R1B2 GUI Detailed Design Rev. 0 3-44 11/20/00

3.6.1.2.7 GUIDMS (Class)

This class is a GUI “wrapper” object that is used to wrap a CHART2DMS object. This is a
abstract class that needs to be extended by the GUI DMS model specific classes.

3.6.1.2.8 GUILibrarySupporter (Class)

This class allows the GUILibraryModule to maintain stored messages that have differing
formats. When an object of this type is installed the user can create, maintain, and use the
specific type of libraries and stored messages that the object supports.

3.6.1.2.9 ResponseDataCreator (Class)

This interface enables the creation of type-specific ResponsePlanItemData objects, which
are used for creating the appropriate type of ResponsePlanItem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

3.6.1.2.10 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.6.1.2.11 DMSNavGroup (Class)

This class serves as a container for all of the GUIDMS objects in the GUIDMSModule,
when they are displayed in the Navigator. The GUIDMSModule has one instance of this
class.

3.6.1.2.12 GUIDMSResponsePlanItem (Class)

This class is a GUI “wrapper” object that is used to wrap a ResponsePlanItem object which
contains a DMSRPIData object.

3.6.1.2.13 GUIDMSStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object of
DMSMessage type. It helps in the creation of a DMS stored message using a
DMSMessageEditor.

R1B2 GUI Detailed Design Rev. 0 3-45 11/20/00

3.6.1.2.14 GUIPlanItem (Class)

This is a GUI base class for all the plan items. Each GIUPlanItem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

3.6.1.2.15 GUIResponsePlanItem (Class)

This is a base class for the GUI wrapper object that is used to wrap a ResponsePlanItem.
The ResponsePlanItem represents a proposed action to perform on a target object in
response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the
response plan item.

3.6.1.2.16 GUIPlan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data
locally for faster access, as well as to give the Plan some GUI-specific functionality such as
menus and command handling.

3.6.1.2.17 GUIStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object. It
provides a user interface object which can implement whatever interfaces are necessary for
the object to exist within the GUI framework (for example, an object must support the
NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.6.1.2.18 GUITrafficEventHolder (Class)

 This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.6.1.2.19 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.6.1.2.20 GUIDefaultDMS (Class)

This class is derived from the GUIDMS class and represents a standard model DMS. This
class can handle the configuration requirements and status information that are standard
across all DMS types.

R1B2 GUI Detailed Design Rev. 0 3-46 11/20/00

3.6.1.2.21 GUIDMSModelSupporter (Class)

This interface must be implemented by any class that intends to provide functionality for
the creation of DMS objects of a specific model type. The GUIDMSModelSupporter
provides methods to return the specific menu string, which when selected on the GUI by the
user, results in the creation of the DMS object of that type. There are methods in the
interface that help in the creation of the model specific DMS object.

3.6.1.2.22 GUIDMSStoredMsgItem (Class)

This class is a GUI “wrapper” object that is used to wrap a PlanItem object which contains
the DMSPlanItemData. It helps in the creation of a DMS plan item data using the
DMSStoredMsgItemProperties object.

3.6.1.2.23 GUIFP9500 (Class)

This class is derived from the GUIDMS class and represents a FP9500 model type DMS.
This class can handle the specialized configuration requirements of a FP9500 model DMS
and interpret the model specific status information.

3.6.1.2.24 GUIResponsePlanItemCreator (Class)

This interface is used to enable the creation of specific types of GUIResponsePlanItem
wrapper objects depending upon which type of ResponsePlanItem is being wrapped. Any
class wishing to create GUIResponsePlanItems must implement this interface and add
themselves to the GUITrafficEventModule at GUI startup time. When the
GUITrafficEventModule discovers a ResponsePlanItem or catches a CORBA event
indicating that a new response plan item has been created, it will call each known
GUIResponsePlanItemCreator to give it an opportunity to create a specific type of GUI
wrapper object.

3.6.1.2.25 PlanItemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module.
The modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule
will then call the supporter when it is time to display the Plan menu or to create a specific
type of plan item or GUIPlanItem.

3.6.1.2.26 GUIDefaultDMSModelSupporter (Class)

This class provides functionality for the creation of a standard DMS model object, by
implementing the GUIDMSModelSupporter interface.

3.6.1.2.27 GUIFP9500ModelSupporter (Class)

This class provides functionality for the creation of FP9500 type DMS object, by
implementing the GUIDMSModelSupporter interface.

R1B2 GUI Detailed Design Rev. 0 3-47 11/20/00

3.6.1.2.28 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.6.1.2.29 GUIMessageLibrary (Class)

This class is a GUI “wrapper” object that is used to wrap a MessageLibrary object. The
wrapping is done to cache the data locally for faster access, as well as to give the
MessageLibrary some GUI-specific functionality such as menus and command handling.

3.6.1.2.30 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanItem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

R1B2 GUI Detailed Design Rev. 0 3-48 11/20/00

3.6.1.3 DMSNavigatorSupport (Class Diagram)

This diagram shows the user interface relationships of the objects supported by the
GUIDMSModule.

java.awt.event.ActionListener

Droppable

NavTreeDisplayable

Menuable

NavListDisplayable

Navigable

GUIDMSDMSNavGroup GUIDMSResponsePlanItem GUIDMSStoredMsgItem GUIDMSStoredMessage
*1

getNavParent() : NavTreeDisplayable
containsChildNavigable(Navigable) : boolean
getChildNavigables() : Navigable[]
getNavPropertyList() : String []

getMSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]
getSSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

getPropertyValue(property) : String
comparePropertyValues(property, val1, val2) : int

getImage()
getDesc()
allowSetDesc()
setDesc()

Figure 27. DMSNavigatorSupport (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-49 11/20/00

3.6.1.3.1 DMSNavGroup (Class)

This class serves as a container for all of the GUIDMS objects in the GUIDMSModule,
when they are displayed in the Navigator. The GUIDMSModule has one instance of this
class.

3.6.1.3.2 GUIDMS (Class)

This class is a GUI “wrapper” object that is used to wrap a CHART2DMS object. This is a
abstract class that needs to be extended by the GUI DMS model specific classes.

3.6.1.3.3 GUIDMSResponsePlanItem (Class)

This class is a GUI “wrapper” object that is used to wrap a ResponsePlanItem object which
contains a DMSRPIData object.

3.6.1.3.4 GUIDMSStoredMsgItem (Class)

This class is a GUI “wrapper” object that is used to wrap a PlanItem object which contains
the DMSPlanItemData. It helps in the creation of a DMS plan item data using the
DMSStoredMsgItemProperties object.

3.6.1.3.5 GUIDMSStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object of
DMSMessage type. It helps in the creation of a DMS stored message using a
DMSMessageEditor.

3.6.1.3.6 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.6.1.3.7 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

R1B2 GUI Detailed Design Rev. 0 3-50 11/20/00

3.6.1.3.8 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.6.1.3.9 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.6.1.3.10 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.6.1.3.11 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the
left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

R1B2 GUI Detailed Design Rev. 0 3-51 11/20/00

3.6.2 Sequence Diagrams
3.6.2.1 GUIDMSModule:AddDMS (Sequence Diagram)

This sequence shows how an operator adds a new DMS to the system. The processing
shown here is for adding a DMS of the default type. The processing involved in adding a
model specific DMS is much the same, except that the GUI DMS and the Properties Dialog
objects are the model specific derivatives. When the user right clicks on the GUIDMS
object, the model supporters registered in the system are called on to return the menu item
string that is to be displayed to the user in order to create the DMS model that it supports.
The operator selects the DMS model that he/she wishes to create. If the user does not have
the appropriate functional rights, the corresponding menu items are disabled. All the DMS
model supporters are then called upon to create a GUIDMS object. Only one of the
supporters will identify the menu item that was selected (in this case the default supporter),
and proceeds to create the appropriate DMS model. The operator will be shown a DMS
properties dialog box with default configuration information which he/she may modify to
alter the configuration of the DMS. When the operator presses OK, the new DMS will be
added to the system. The DMS will be added to the DMS factory that the user selected in
the properties dialog. If the user did not make a selection, each of the factories in the
CORBA trader is called one by one (starting with the factory closest to the GUI’s trader) to
create the DMS, and the first factory that successfully creates it, will be the home of the
DMS. Once the DMS is added successfully, a DMSAdded event will be pushed from the
server through the DMS event channel and the new GUIDMS object will be added to the
DataModel, which will update all windows after a short delay.

R1B2 GUI Detailed Design Rev. 0 3-52 11/20/00

findObjectsOfType (DMSFactory)

actionPerformed (OK orCANCEL)

[any other error]
CHART2Exception

The DMS Properties dialog
allows the user to select the
factory to which the DMS is
to be added. If the user does not
make a selection, each of the
factory in trader will be called on
to add the DMS, and the first
one that successfully adds it,
will be the one that houses
the DMS.

[*for each model supporter]
getDMSCreationMenuReps

createDMS

CorbaUtilities

get

getToken

[cancel]
closeWindow

[user did not select factory]
findAllObjectsOfType

setConfiguration

[error]
GUIException

success

doProperties

[user did not select factory]
[*for each dms factory in

trader
 until create succeeds]

create

[no rights]
AccessDenied
[any other error]

CHART2Exception

[user right clicks on
dms]

getSSMenuItemReps

create

show

[error]
"Display error"

getCommandStatusHandler

createCommandStatus

error

getModelSupporters

Each of the supporter is
called to create a GUIDMS
object. This process stops
when a supporter successfully
creates a GUIDMS object or
none of the supporters could
create the GUIDMS object.

[user selected factory]
createDMS

[no rights]
AccessDenied

A menu is displayed
wherefrom the user
can choose to create
any of the DMS model
supported by the system.
If the user does not have
the appropriate rights,
the corresponding menu
items are disabled.

Break Loop

A DMS Properties
dialog is displayed and
it allows the user to
edit the model specfic
configuration parameters.
The user can press the
OK button to add the DMS or
CANCEL to cancel the
operation.

closeWindow

operation cancelled

The GUIDMS wrapper object
created would be a DMS model
specific one, that gets the model
specific configuration information
from the user and requests the
DMS factory to create this new
DMS object. The model specific DMS
PropertiesDialog is used to obtain the
user input. Refer to the class diagrams
DMSDialogs and DMSModuleArchitecture
for details.

create

[*for each model supporter]
createNewGUIDMSModel

GUIDMSModule

[user clicks on
add DMS model]
actionPerformed

GUIDMSModelSupporter
GUI CommandStatusHandler

CommandStatus

GUIDMS

DefaultDMSPropertiesDialog

The creation of a DMS is not
instantaneous. The DMS factory
needs to add the DMS to the FMS
which in turn may contact the device
to set certain configuration information
on the device. The progress of the
DMS addition is tracked in the GUI using
the command status object, which is
periodically updated by the factory with
the current status. Once the DMS is created
a DMSAdded event is pushed.

This temporary GUIDMS object is
deleted after creation proces. When
 the DMSAdded event is received from
the server (or when the DMS is
discovered during the next
discovery cycle), the actual GUIDMS
object will be added to the GUI's
DataModel.

DMSNavGroup
DMSFactory

Administrator

Figure 28. GUIDMSModule:AddDMS (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-53 11/20/00

3.6.2.2 GUIDMSModule:AddDMSStoredMessageItem (Sequence Diagram)

This diagram shows how a PlanItem is added to the system. The user clicks on the GUIPlan
object in the Navigator and chooses “Create DMS Plan Item”. The GUIPlan then calls all
the PlanItemCreationSupporters (the GUIDMSModule is one) to create the GUIPlanItem.
The processing stops with the first supporter that returns the new object after successful
creation. The menu selection being a DMS plan item, the GUIDMSModule recognizes the
menu item string. The module creates a temporary GUI wrapper for a plan item and calls it
to display its properties, which invokes the DMSStoredMsgItemPropertiesDialog. When
the user clicks Apply or OK, the dialog calls back to the GUIDMSStoredMsgItem wrapper
object to set the item data. Since the wrapper contains no served PlanItem, it calls the
CHART2DMS to create one. If successful, the server will push a PlanItemAdded event to
all GUIs, which the GUI will catch to create a new GUIDMSStoredMsgItem wrapper
object (the temporary wrapper will be deleted).

R1B2 GUI Detailed Design Rev. 0 3-54 11/20/00

Plan

The window is
left open to allow
the user to create
multiple plan items
in succession

This menu item
will be disabled if
the user does not
have sufficient rights.

setDMS

setMessage

create

setMsgItemData

addItem

cancel]

[no rights]
AccessDenied

[other error]
CHART2Exception

[error]
"Display Error"

[error]

doProperties

get

getDataModel

["Create DMS Plan Item"
menu item clicked]
actionPerformed createNewGUIPlanItem

create

create

getObjectsOfType
(GUIDMS)

getPlan

getObjectsOfType
(GUIDMSStoredMessage)show

actionPerformed (OK or CANCEL)

success

[user cancelled op.]
closeWindow

At this point all the DMS's
in the system along with the
the DMS Stored messages are
displayed to the user for
selection

DMSPlanItemData

GUI
GUIPlan GUIDMSModule

DataModel

GUIDMSStoredMsgItem

DMSStoredMsgItemProperties

Operator This dialog will allow
the user to select
a DMS and a Stored Message
to associate with it.

When the add succeeds the server
pushes the PlanItemAdded event.
This event is caught by the GUIPlanModule
and a new GUIDMSStoredMsgItem is created.
The GUIDMSStoredMsgItem created in the
process shown in this diagram is temporary
and is deleted when user closes the dialog.

Figure 29. GUIDMSModule:AddDMSStoredMessageItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-55 11/20/00

3.6.2.3 GUIDMSModule:BlankDMSInMaintenanceMode (Sequence Diagram)

This sequence diagram shows how a user with appropriate rights can blank a DMS when
the device is in maintenance mode. The sequence is initiated when the user right clicks on a
GUIDMS object in the navigator and selects the “Blank” menu item. The GUIDMS object
creates a CommandStatus object and then calls the Chart2DMS object that it wraps to
perform the blank operation. The progress of the blank operation is displayed to the user on
the command status window, which is updated as and when the server updates the
CommandStatus object that was passed to it along with the blank command. If successful,
the server will push CORBA events indicating the changed display status.

The progress of the blank
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

CommandStatus

CommandStatusHandler

create

[other error]
CHART2Exception

[no rights]
AccessDenied

[DMS controlled by different
op center and no
override rights]

ResourceControlConflict

If successful, this will push a
DMSStatusChanged event. If the
DMS was in use, it may also push
a ControllingOpCtrChanged event.
These events are handled in the GUI
by notifying the relevant GUI
components via the DataModel.

GUI
Administrator

GUIDMS Chart2DMS

[user clicks on blank menu item]
actionPerformed

blankSign

getCommandStatusHandler

createCommandStatus

This menu item will be
disabled if the user does
not have the rights or the
device is not in maintenance
mode.

getToken

get

Figure 30. GUIDMSModule:BlankDMSInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-56 11/20/00

3.6.2.4 GUIDMSModule:CreateDMSStoredMessage (Sequence Diagram)

This diagram shows how a DMS stored message is created. When the user right clicks on
the GUIMessageLibrary object, the library supporters registered in the system are called on
to return the menu item string that is to be displayed to the user in order to create the library
message that it supports. In this case, the operator selects the menu item to create a DMS
message that is supported by the GUIDMSModule. If the user does not have the appropriate
functional rights, the corresponding menu items are disabled. All the library supporters are
then called upon to create the library message object. Only one of the supporters will
identify the menu item that was selected (in this case it is the GUIDMSModule), and
proceeds to create the appropriate library message. The GUIDMSModule creates a
temporary GUIDMSStoredMessage object to edit, and calls doProperties to show the
DMSMessageEditor dialog. As the user types, banned words will be shown to the user.
When the user clicks OK, the message editor will check for disapproved words and
provides suggestions to replace these words. A new DMSMessage object is created and the
setMessage method is called on the GUIDMSStoredMessage wrapper object. Since the
wrapper does not contain a served StoredMessage object, it calls the message library to
create one. If successful, the server will create a new StoredMessage object and will push
an event to update all of the GUIs.

R1B2 GUI Detailed Design Rev. 0 3-57 11/20/00

GUIDMSStoredMessage

DMSMessageEditor

DMSMessage

MessageLibrary

This temporary GUIDMSStoredMessage
object will be deleted. When the server
pushes the StoredMessageAdded event,
the GUILibraryModule will catch the event
and call the appropriate GUIStoredMessageCreator
object to create a new GUIStoredMessage.
When one does, the GUILibraryModule will
add the GUIStoredMessage to the DataModel.

If successful, the
server will push a
StoredMessageAdded
event

returns
suggested words

GUIDMSModuleGUILibraryModule
Operator

GUIMessageLibrary

[error]

get
getLibrarySupporters

[user clicks on "Create
DMS Stored Message"]

actionPerformed createNewGUIStoredMessage

[right click]
makeMenu

getStoredMessageCreationMenuReps

checkForBannedWords
[banned words]

WordList

[types text for message]
keyPressed

performApprovedWordsCheck
[disapproved words]

WordList

doProperties

actionPerformed (OK or CANCEL)

[cancel]

setMessage

get
getToken

createStoredMessage

createStoredMessage

[no rights]
AccessDenied

[bad message content]
DisapprovedMessageContent

[other error]
CHART2Exception

success

[error]
"Display error"

closeWindow

[right click]
mousePressed

getSSMenuItemReps

MenuItemRep[]MenuItemRep[]JMenu
""Display

Menu"

create

create

show

"allow user to replace
or ignore

dispproved words"

create

[*for each disapproved word]

NavTree GUI GUIDictionary

[banned words]
"Display banned words"

[user cancelled operation]
closeWindow

Figure 31. GUIDMSModule:CreateDMSStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-58 11/20/00

3.6.2.5 GUIDMSModule:CreateResponsePlanItem (Sequence Diagram)

This diagram shows how a DMS response plan item is added to the system. The user drags
a GUIDMS or a GUIDMSStoredMsgItem object over the GUITrafficEventHolder (the
object representing the traffic event in the GUI) and drops it. Since the GUIDMS and
GUIDMSStoredMsgItem objects both implement the ResponseDataCreator interface, the
GUITrafficEventModule can use either of these to create a DMSResponsePlanItemData,
which it then uses to create a ResponsePlanItem. See the sequence diagram:
GUITrafficEventModule:AddResponsePlanItem for details.

The dragging of GUIDMS or GUIDMSStoredMessageItem objects to a
GUITrafficEventHolder to create a response plan item is described in the
sequence diagram: GUITrafficEventModule:AddResponsePlanItem. Both
the GUIDMS and the GUIDMSStoredMessageItem serve as
ResponseDataCreators (an interface which they implement).

Figure 22. GUIDMSModule:CreateResponsePlanItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-59 11/20/00

3.6.2.6 GUIDMSModule:DiscoverEventchannels (Sequence Diagram)

This diagram shows the processing involved in the DMS event channel discovery, which
takes place at startup of GUIDMSModule and periodically from thereon. The
GUIDMSModule queries the event channels from the trading service, creates a
PushConsumer to receive the CORBA events, and adds the PushConsumer objects to the
EventConsumerGroup for maintenance of the event channels.

create

GUIDMSModule CORBAUtilities

This queries the
trader for event channel
objects for DMS control
events

PushEventConsumer

discoverEventChannels

findObjects

[*for each event channel found]

EventConsumerGroup

add

GUI
Discovery

Thread

Figure 32. GUIDMSModule:DiscoverEventchannels (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-60 11/20/00

3.6.2.7 GUIDMSModule:DiscoverObjects (Sequence Diagram)

This diagram shows the processing involved in the discovery of Chart2DMS corba objects,
which takes place at startup of GUIDMSModule and periodically from thereon. The
GUIDMSModule queries the trading service for all the DMS Factory objects. Each factory
object is called on to return the DMS objects that it serves. If the object discovered is
already in the data model, no action is required. Otherwise, each of the objects discovered
in this fashion, is passed on to the GUIDMSModelFactory that is capable of identifying the
DMS model type using its collection of GUIDMSModelSupporter objects, and creating a
GUIDMS object that wraps this Chart2DMS corba object. Thus the GUIDMS object
created in this manner, is model specific (refer to the DMSModuleArchitecture class
diagram for the classes that derives from GUIDMS to represent specific DMS models). It is
then added to the data model.

GUIDMSModelFactory

[object not found in data model]
createGUIDMSModel

The GUI DMS wrapper
created will be model
specific if it was created
by a model supporter, or
a Default DMS otherwise.

getAssociatedHAR

GUI Discovery Thread
GUIDMSModule

[*for each
DMS facory

found]

getResources

CORBAUtilities DataModelCHART2DMS

GUIDMS

discoverObjects

findAllObjectsOfType

getID
getObject

[*for each model
supporter registered]
createGUIDMSModel

objectAdded

DMSFactory

getConfiguration

getStatus

Query the
trader for DMS
factory objects

GUIDMSModelSupporter

[*for each
DMS]

create

GUIHAR

[dms is har notifier]
getObject addMsgNotifier

Figure 34. GUIDMSModule:DiscoverObjects (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-61 11/20/00

3.6.2.8 GUIDMSModule:DMSRemovedEvent (Sequence Diagram)

This diagram shows how a DMSDeleted event is handled in the GUI. First, an attempt is
made to get the GUIDMS object from the DataModel. If it exists, the GUIDMS is removed
from the DataModel. The DataModel notifies all the observers about the removal of the
DMS from the system. This change will be reflected on all the observer windows.

getObject

CORBA
Event

Service GUIDMS

The DataModel notifies
all observers about
the DMS removal. This
will cause the observers to
remove their references
to the GUIDMS. The object
is eventually removed
by the Java garbage
collection.

getDataModel
push(DMS id, event info)

delete

[DMSDeleted]
objectRemoved(GUIPlan)

GUIDMSModule DataModelGUI

Looks up the DMS
in the data model using
the DMS ID

Figure 35. GUIDMSModule:DMSRemovedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-62 11/20/00

3.6.2.9 GUIDMSModule:DMSStateChangeEvents (Sequence Diagram)

This sequence diagram shows the processing involved in handling a DMS configuration
change or a DMS Status Change event that is pushed by the server. The event info
accompanying the event includes the DMS ID whose state has changed and the changed
state information. The GUIDMS object corresponding to the DMS ID in the event info is
looked up in the data model. This GUIDMS object updates itself with the current state and
alerts the data model, which informs all the registered observers about the change. The data
passed on to the GUIDMS is DMS model dependent. Since the GUIDMS is of the same
model type as the data, it can interpret the event data and update its state.

get

getDataModel

objectUpdated

get

getDataModel

getObject

DataModelCORBA Event
Service

GUIDMSModule

The GUIDMS object corresponding
to the DMS ID in the event info is
looked up in the data model. This
GUIDMS object updates itself with
the current state and alerts the
data model, which informs all the
registered observers about the change.
The data passed on to the GUIDMS is
DMS model dependent. Since the
GUIDMS is of the same model type as
the data, it can interpret the event
data and update its state.

"update cache"

push

GUIDMSGUI

The type of event
pushed here can be
DMSConfigChanged or
DMSStatusChanged.
The event info. contains
the DMS ID and the data
asssociated to
the DMS configuration or
DMS status as the case
 may be.

Figure 36. GUIDMSModule:DMSStateChangeEvents (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-63 11/20/00

3.6.2.10 GUIDMSModule:Login (Sequence Diagram)

This sequence of events is initiated when a user logs in to the system using either the login
or change user commands from the toolbar window. These commands cause the
GUI:LoginBasic sequence or GUI:ChangeUserBasic to be performed. As part of either of
these sequences, the GUI will call each of the installed modules giving them a chance to
perform necessary operations to set up data specific to a particular user. The
GUIDMSModule does not currently need to perform any processing when a user logs in.

See GUI:LoginBasic and
GUI:ChangeUserBasic
sequence to see details
on login operation processing.

login or changeUser

GUIDMSModule

loggedIn

User

GUI

Currently the module
does not perform any
work on login.

Figure 37. GUIDMSModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-64 11/20/00

3.6.2.11 GUIDMSModule:Logout (Sequence Diagram)

This sequence of events is initiated when a user logs out of the system using either the
logout or change user commands from the toolbar window. These commands cause the
GUI:LogoutBasic or GUI ChangeUserBasic sequences to be performed. As part of these
sequences, the GUI will call each of the installed modules giving them a chance to perform
necessary operations to clean up data for a particular user. The GUIDMSModule does not
currently need to perform any processing when a user logs out.

logout or changeUser

Currently the module
does not perform any
work on logout.

See GUI:LogoutBasic and
GUI:ChangeUserBasic
sequence to see details
on logout operation processing.

GUIDMSModule

User

GUI

loggedOut

Figure 38. GUIDMSModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-65 11/20/00

3.6.2.12 GUIDMSModule:ModifyDMSSettings (Sequence Diagram)

This sequence shows how an operator may alter the configuration of a Default DMS. Refer
to the ModifyFP9500Settings sequence diagram for the processing required for a specific
DMS model. The operator initiates this action by right clicking on the DMS in a window
and selecting the “Properties” menu item. If the user does not have the appropriate
functional rights, this menu item will not be made available. The GUIDefaultDMS object
creates a DefaultDMSPropertiesDialog, which displays the current DMS configuration and
allows the user to modify the current configuration. When the operator is done editing the
configuration, clicking on the “OK” button on the dialog causes the GUIDefaultDMS
module to create a CommandStatus object, and a DMSConfiguration object and then call
the Chart2DMS object to reconfigure itself by calling the setConfiguration method. The
setConfiguration returns control immediately and performs the DMS reconfiguration
operation asynchronously, barring any user privilege issues. The operation may involve
field communication for certain device models. The progress of the command is
communicated to the user via the CommandStatus object, which is updated by the server.

CommandStatus

getConfiguration

[error]
"Display error message

to the user"

create

At this point, the user can
track progress of the command
through command status window.
Once the DMS is successfully re-configured,
the server pushes a DMSConfigChanged
event that is caught by the GUI and the
updated configuration is reflected in
the data model.

closeWindow

[error]

DMSConfigurationcreate

[other error]
CHART2Exception

[no rights]
AccessDenied

There are certain DMS model dependent
paramaters that need to be set to configure
a DMS. Hence the DMSProperties dialog
varies for different DMS models. The model
specific class that sub-classes GUIDMS
displays the appropriate DMSProperties dialog
for operator input. This diagram shows the
processing for a default DMS object.

success

The setConfiguration returns control
immediately and performs the DMS
reconfiguration operation asynchronously,
barring any user privilege issues. The operation
 may involve field communication for
certain device models. The progress of
the command is communicated to the user
via the CommandStatus object, which is
updated by the server.

This menu item will be
grayed out if the user
does not have
sufficient rights.

create

show

actionPerformed (OK or CANCEL)

doProperties

createCommandStatus

getToken

Chart2DMS GUI

[user pressed OK]
setConfiguration

setConfiguration

get

[user cancelled operation]
closeWindow

getCommandStatusHandler

CommandStatusHandler
Operator

GUIDefaultDMS

DefaultDMSPropertiesDialog

At this point the user
will be shown the
DMS Properties dialog.
This dialog is modeless
and will apply the changes
to the DMS when the user
presses the OK button.

This is a model
dependent CORBA
value type object

Figure 39. GUIDMSModule:ModifyDMSSettings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-66 11/20/00

3.6.2.13 GUIDMSModule:ModifyDMSStoredMessage (Sequence Diagram)

This diagram shows how the contents of a stored message are modified. The user clicks on
an existing GUIDMSStoredMessage object, and clicks on the “Properties” menu item. The
GUIDMSStoredMessage then invokes the DMSMessageEditor dialog. On initialization, the
dialog calls back to the GUIDMSStoredMessage wrapper object to get the message content,
which calls back to the StoredMessage object in the server, if necessary. When the
DMSMessage is returned, the dialog can be initialized from the existing message contents.
As the user types in text for the message, banned words will be displayed. When the user
clicks OK, the message editor will check for disapproved words and provides suggestions
to replace these words. A new DMSMessage object is created with the user modifications.
The GUIDMSStoredMessage is called to set the message, which in turn calls the
StoredMessage object in the server. If successful, the server will push a CORBA event to
update the clients.

If successful, the
server will push a
StoredMessageChanged
event

Operator

DMSMessageEditor

GUIDMStoredMessage StoredMessage DMSMessage GUIDictionary GUI

The menu item will
be disabled if the
user does not
have rights

[clicks on
"Properties"]

actionPerformed create

show

actionPerformed (OK or CANCEL)

getMessageContent

geMultiString

getBeaconState

"Initialize Dialog"

[types text for message]
keyPressed

performApprovedWordsCheck
[disapproved words]

WordList

checkForBannedWords
[banned words]

WordList]
[banned words]

"Displaybanned Words"

[user cancelled operation]
closeWindow

[cancel]

setMessage

setMessage
[no rights]

AccessDenied

getToken

[contains banned words]
DisapprovedMessageContent

[other error]
CHART2Exception

[error]
"Display Error"

[error]

DMSMessagecreate

success

[*for each disapproved word] "allow user to replace
or ignore disapproved words"

This represents the
modified message that
will be stored.

get

closeWindow

Figure 40. GUIDMSModule:ModifyDMSStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-67 11/20/00

3.6.2.14 GUIDMSModule:PollNow (Sequence Diagram)

This sequence diagram shows how a user with appropriate rights can perform a forced
polling of a DMS, when the device is in maintenance mode. The sequence is initiated when
the user right clicks on a GUIDMS object and selects the “Poll Now” menu item. The
GUIDMS object creates a CommandStatus object and then calls the Chart2DMS object that
it wraps to perform the operation. The progress of the poll now operation is displayed to the
user on the command status window, which is updated as the server updates the
CommandStatus object that was passed to it along with the poll command. If successful, the
server will push CORBA events indicating the changed DMS status.

create

[other error]
CHART2Exception

[no rights]
AccessDenied

[DMS controlled by different
op center and no
override rights]

ResourceControlConflict

getToken

[user clicks on pollNow menu item]
actionPerformed

pollNow

getCommandStatusHandler

createCommandStatus

get

If successful, this will push a
DMSStatusChanged event.
The event is handled in the GUI
by notifying the relevant GUI
components via the DataModel.

CommandStatus

CommandStatusHandlerGUI
Administrator

This menu item will be
disabled if the user does
not have the rights or the
device is not in maintenance
mode.

GUIDMS Chart2DMS

The progress of the pollNow
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

Figure 41. GUIDMSModule:PollNow (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-68 11/20/00

3.6.2.15 GUIDMSModule:PutDMSInMaintenanceMode (Sequence Diagram)

This diagram shows how a DMS is put into maintenance mode. The Administrator right
clicks on a GUIDMS and clicks on the “Put In Maintenance Mode” menu item. The
GUIDMS creates a CommandStatus object to monitor the progress of the command and
calls the CHART2DMS object (which it wraps) to put it in maintenance mode. If
successful, the server will push a CORBA event indicating that the comm mode has been
changed.

The server will
update the CommandStatus
object with the progress
of the command, which is
shown to the user on a GUI
Window. In case of a failure,
the reason for the failure is also
shown to the user.

If successful, this will push a
DMSStatusChanged event.
If the DMS was in use, it may
also push ControllingOpCtrChanged
and ResponsePlanItemStatusChanged
 events. The GUI will catch these events
and will update the GUI wrapper
objects as needed.

Administrator
GUIDMS CHART2DMS

This menu item will be
disabled if the user does not
have rights or if the device is
already in maintenance mode.

GUI CommandStatusHandler

CommandStatus
createCommandStatus

[no rights]
AccessDenied

[DMS controlled by
different op ctr and
no override rights]

ResourceControlConflict

[clicks on "Put In Maintenance
 Mode" menu item]
actionPerformed get

getToken
getCommandStatusHandler

putInMaintenanceMode

[in maintenance mode]
CHART2Exception

create

Figure 42. GUIDMSModule:PutDMSInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-69 11/20/00

3.6.2.16 GUIDMSModule:PutOnline (Sequence Diagram)

This diagram shows how a DMS is put online. The Administrator right clicks on a
GUIDMS and clicks on the “Put Online” menu item. The GUIDMS creates a
CommandStatus object to monitor the progress of the command and calls the
CHART2DMS object (which it wraps) to put it online. If successful, the server will push a
CORBA event indicating that the comm mode has been changed.

getCommandStatusHandler

createCommandStatus

get

[no rights]
AccessDenied

create

[other error]
CHART2Exception

If successful, this will push a
DMSStatusChanged event.
The event is handled in the GUI
by notifying the relevant GUI
components via the DataModel.

CommandStatus

CommandStatusHandlerGUI
Administrator

This menu item will be
disabled if the user does
not have the rights or the
device is not in maintenance
mode.

GUIDMS Chart2DMS

The progress of the
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

[DMS controlled by different
op center and no
override rights]

ResourceControlConflict

getToken

[user clicks on"Put Online" menu item]
actionPerformed

putOnline

Figure 43. GUIDMSModule:PutOnline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-70 11/20/00

3.6.2.17 GUIDMSModule:RemoveDMS (Sequence Diagram)

This diagram shows how a DMS is removed from the system. The Administrator right
clicks on a GUIDMS object and clicks on the “Remove” menu item. The GUIDMS creates
a CommandStatus object to monitor the progress of the command and calls the remove()
method of the Chart2DMS object (which it wraps). If successful, the server will push a
CORBA event indicating that the DMS was removed.

Gets User
confirmation

The completion status
will be shown in the command
status window. In case of a failure,
the error message returned from
the server is also displayed
in the command status.

CommandStatusHandler

CommandStatus

getCommandStatusHandler

createCommandStatus

create

showYesNoDialog

GUIDMS

[user cancelled operation]
completed

remove
[no rights]

AccessDenied

[any other error]
CHART2Exception

completed

success

If successful, this
will cause a DMSDeleted
event to be pushed through
the event service. When
caught, the GUIDMS will
be removed from the DataModel.
Refer to DMSRemovedEvent sequence
diagram.

[AccessDenied]

[CHART2Exception]

[user clicks on the
"Remove"
menu item]

remove get

getToken

GUI
Administrator

Chart2DMS

This menu item
will be disabled
if the user does
not have the
correct rights.

Figure 44. GUIDMSModule:RemoveDMS (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-71 11/20/00

3.6.2.18 GUIDMSModule:Reset (Sequence Diagram)

This sequence diagram shows how a user with appropriate rights can reset a DMS, when
the device is in maintenance mode. The sequence is initiated when the user right clicks on a
GUIDMS object and selects the “Reset” menu item. The GUIDMS object creates a
CommandStatus object and then calls the Chart2DMS object that it wraps to perform the
operation. The progress of the reset operation is displayed to the user on the command
status window, which is updated as the server updates the CommandStatus object that was
passed to it along with the reset command. If successful, the server will push a CORBA
event indicating the changed DMS status.

If successful, this will push a
DMSStatusChanged event. If the
DMS was in use, it may also push
a ControllingOpCtrChanged event.
These events are handled in the GUI
by notifying the relevant GUI
components via the DataModel. Refer
to the DMSStateChangeEvents
sequence diagram.

CommandStatus

CommandStatusHandlerGUI
Administrator

This menu item will be
disabled if the user does
not have the rights or the
device is not in maintenance
mode.

GUIDMS Chart2DMS

The progress of the reset
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

create

[other error]
CHART2Exception

[no rights]
AccessDenied

[DMS controlled by different
op center and no
override rights]

ResourceControlConflict

getToken

[user clicks on reset menu item]
actionPerformed

resetController

getCommandStatusHandler

createCommandStatus

get

Figure 45. GUIDMSModule:Reset (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-72 11/20/00

3.6.2.19 GUIDMSModule:SetMessageInMaintenanceMode (Sequence Diagram)

This shows how a message is set on a DMS when it is in maintenance mode. The user right
clicks on the GUIDMS object and clicks on the “Edit Message (Auto)” or “Edit Message
(Manual)” menu item. The GUIDMS object invokes the DMSMessageEditor dialog. The
DMSMessageEditor dialog is initially populated with the current message displayed on the
DMS, if any. The user may use this dialog to type in a new message and preview what that
message will look like formatted for the selected DMS. As the user types a text message,
the banned words are displayed. When the user clicks OK, the message editor will check
for disapproved words and provides suggestions to replace these words. A DMSMessage
object is created and GUIDMS is called to set the message. The GUIDMS object creates a
CommandStatus to monitor the progress of the command, then calls the CHART2DMS
object which it wraps. If successful, the server will push CORBA events to update the
clients for any state changes.

MultiFormatter

GUIDMS
GUIDMSModule GUIDictionary CHART2DMS

CommandStatus

MessageContent

create

get

create

[DMS controlled by another op center
and no override permission]

ResourceControlConflict

[no rights]
AccessDenied

[other error]
CHART2Exception[error]

GUIException
[error]

"Display error
message"

error

[success]
closeWindow

performApprovedWordsCheck
[disapproved Words]

WordList

[banned words]
"Display banned words

to user"

"allow user to replace
or ignore disapproved

words"

success

[*for each disapproved word]

Displays the
current message
in the editor

getCommandStatusHandler

showMessage

actionPerformed (OK or CANCEL)

plainTextToMulti

getDictionary

checkForBannedWords

[cancel]
closeWindow

Command
Status
Handler

This menu item will
be disabled if the DMS is
not in maintenance mode
or the user does not have
rights.

If successful, this will cause
the server to push an event
through the event channel.
The module will catch the event
and will update the rest of the
GUI via the DataModel.

At this point the user
has a message editor
and can alter the
message in the entry
field.

setMessage

createCommandStatus

showMessage

keyPressed

show

create

get
Each time the user
changes the text on
the message editor.

GUI

plainTextToMulti

When the user
presses OK or
Cancel on the
message editor.

setMessage

[cancel]

[OK]
plainTextToMultisetMessageThin

Administrator

DMSMessageEditor

MultiConverter

DMSMessageView

parseMulti

create

getToken

Figure 46. GUIDMSModule:SetMessageInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-73 11/20/00

3.6.2.20 GUIDMSModule:ShowTrueDisplay (Sequence Diagram)

This sequence shows how an operator may view the current message displayed on a
particular DMS. The view will be formatted to show the message as it looks on the sign.
The operator initiates this sequence by right clicking on the desired DMS in a window and
selecting the “Show Display” menu item.

getMessage

showMessage

update

get

getDataModel
attachObserver

Check if update
is for this DMS

[not for this DMS]

MultiConverter

showMessage

show

create

Operator
GUIDMS

DMSTrueDisplay

DMSMessageView

DataModel

This occurs when
the message changes on
the DMS in the field and
the event has been caught
by this GUI. The data model
updates all attached observers.

create

GUI
showTrueDisplay

parseMulti

parseMulti

Figure 47. GUIDMSModule:ShowTrueDisplay (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-74 11/20/00

3.6.2.21 GUIDMSModule:Shutdown (Sequence Diagram)

This diagram shows processing involved in the shutdown of the GUIDMSModule. At the
time of GUI shutdown all of the installable modules including the GUIDMSModule is
called on to perform cleanup operations by calling their shutdown method. On shutdown,
the GUIDMSModule disconnects itself from the ORB.

POA

deactivate_object

GUI

Exit Toolbar
Window

shutdown

User

GUIDMSModule

shutdown

delete

Figure 48. GUIDMSModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-75 11/20/00

3.6.2.22 GUIDMSModule:Startup (Sequence Diagram)

This diagram shows the processing involved during startup of the GUIDMS module. At
GUI startup time, each of the installable modules including the GUIDMSModule is
initialized by calling their startup routines. The GUIDMSModule connects itself to the
ORB in order to receive DMS related CORBA events from the event service. A
DMSNavGroup object is created to manage the GUIDMS related objects in the GUI
navigator. A GUIDMSModelFactory object is created which will aid the GUIDMSModule
in the creation of model specific GUIDMS objects. Finally, the GUIDMSModule registers
itself with the GUIPlanModule, GUILibraryModule and the GUITrafficEventModule in
order to be able to support GUIPlanItem, GUIDMSStoredMessage and
GUIDMSResponsePlanItem objects respectively.

get

addLibrarySupporter

get

addResponsePlanItemCreator

GUILibraryModule GUITrafficEventModule

Connect to the
ORB to receive
CORBA events
pushed through
the event channel.

POA

activate_object

GUIDMSModuleProperties

getDMSCreationMenuReps

"store the menu string
supporter mapping"

[*for each DMS
model supporter

known to the
system]

get

objectAdded

create

startup

create

getDataModel

get

getMultiFormatters

The GUIDMSModelSupporter
interface is implemented by
each of the DMS Models
supported in the system. Refer
to the DMSModuleArcitecture
class diagram for details on the
model supporters

GUIDMSModelSupporter

GUIDMSModelFactory

GUIPlanModule

startup

A note for the developer:
At startup time the CORBA valuetype
factories need to be registered for DMS
module valuetypes like DMSConfiguration,
DMSStatus and so on.

These registration methods should be
within a try block. If any of those modules
are not installed, the exceptions thrown are
caught and ignored. The GUIDMSModule
initialization is not affected.

DMSNavGroup

DataModel

objectAdded

addPlanItemSupporter

GUI
GUIDMSModule

The module will exist throughout
the life of the application and
will be cleaned up at shutdown.

Figure 49. GUIDMSModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-76 11/20/00

3.6.2.23 GUIDMSModule:TakeOffline (Sequence Diagram)

This sequence diagram shows how an operator with the appropriate rights can take a DMS
offline. The sequence is initiated when the user right clicks on a GUIDMS object in the
navigator and selects the “Take Offline” menu item. The GUIDMS creates a
CommandStatus object and calls the CHART2DMS object (that it wraps) to execute the
offline command. The progress of the operation is displayed to the user on the command
status window, which is updated as the server updates the CommandStatus object that was
passed to it along with the offline command. If successful, the server will push a CORBA
event indicating that the DMS has been taken offline.

Administrator

This menu item will be
disabled if the user does
not have the rights or the
device is not in maintenance
mode.

GUIDMS Chart2DMS

The progress of the
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

If successful, this will push a
DMSStatusChanged event.
The event is handled in the GUI
by notifying the relevant GUI
components via the DataModel.

CommandStatus

CommandStatusHandlerGUI

[DMS controlled by different
op center and no
override rights]

ResourceControlConflict

getToken

[user clicks on"Take Offline" menu item]
actionPerformed

takeOffline

getCommandStatusHandler

createCommandStatus

get

[no rights]
AccessDenied

create

[other error]
CHART2Exception

Figure 50 GUIDMSModule:TakeOffline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-77 11/20/00

3.6.2.24 GUIDMSModule:TrafficEventResponse-BlankDMS (Sequence Diagram)

This diagram shows how the closing of a traffic event blanks a DMS that was earlier used
to display a message in response to the event. A DMS may also be blanked when the
response item associated to this DMS is removed from the traffic event. The user right
clicks on the GUIDMSResponsePlanItem or the GUITrafficEvent objects and selects the
appropriate menu item. In both cases, the remove method of the
GUIDMSResponsePlanItem wrapper object will be called, which will in turn call the
served ResponsePlanItem object that it wraps. If successful, the server will push events to
all GUIs indicating the changed status.

The server updates the progress
of the command on the traffic
event dialog. This is possible
because the ResponsePlanItem object
is also a CommandStatus.

Operator
GUIDMSResponsePlanItem ResponsePlanItem

When a ResponsePlanItem of DMS
variety is removed, a device command
is sent to blank the earlier message that
was set, when the item was executed.
If the sign was successfully blanked, the
server pushes a DMSStatusChanged event,
ControllingOpCtrChanged event, and
ResponsePlanStatusChanged event.
The GUIDMSModule listens to these events
and causes the updates to happen on the
appropriate GUIDMS object.

GUI

[removes response
item from event or

closes event]
remove get

getToken

[DMS in use by a
different op ctr and
no override rights]

ResourceControlConflict

remove
[no rights]

AccessDenied
[not online]

CHART2Exception

Figure 51. GUIDMSModule:TrafficEventResponse-BlankDMS (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-78 11/20/00

3.6.2.25 GUIDMSModule:ModifyFP9500Settings (Sequence Diagram)

This sequence shows how an operator may alter the configuration of a FP9500 DMS. In
fact the processing shown here will be the same for any other model of DMS in the system.
Refer to the ModifyDMSSettings sequence diagram for the processing required for a
default DMS. The operator initiates this action by right clicking on the DMS in a window
and selecting the “Properties” menu item. If the user does not have the appropriate
functional rights, this menu item will not be made available. The GUIFP9500 object creates
a FP9500PropertiesDialog, which displays the current DMS configuration and allows the
user to modify the current configuration. When the operator is done editing the
configuration, clicking on the “OK” button on the dialog causes the GUIFP9500 module to
create a CommandStatus object, and a DMSConfiguration object and then call the
Chart2DMS object to reconfigure itself by calling the setConfiguration method. The
setConfiguration return control immediately and performs the DMS reconfiguration
operation asynchronously, barring any user privilege issues. The operation may involve
field communication for certain device models. The progress of the command is
communicated to the user via the CommandStatus object, which is updated by the server.

There are certain DMS model dependent
paramaters that need to be set to configure
a DMS. Hence the DMSProperties dialog
varies for different DMS models. The model
specific class that sub-classes GUIDMS
displays the appropriate DMSProperties dialog
for operator input. This diagram shows the
processing required for a FP9500 DMS

create

[error]

create

closeWindow

getConfiguration

actionPerformed (OK or CANCEL)

[error]
"Display error message

to the user"

doProperties

create

show

setConfiguration

get
getCommandStatusHandler

createCommandStatus

getToken

success

[user pressed OK]
setConfiguration

[no rights]
AccessDenied

[other error]
CHART2Exception

[user cancelled operation]
closeWindow

This is a model
dependent CORBA
value type object

FP9500Configuration

Chart2DMS GUI CommandStatusHandler
Operator

FP9500DMS

FP9500PropertiesDialog

At this point the user
will be shown the
DMS Properties dialog.
This dialog is modeless
and will apply the changes
to the DMS when the user
presses the OK button.

The setConfiguration returns control
immediately and performs the DMS
reconfiguration operation asynchronously,
barring any user privilege issues. The operation
iinvolves field communication. The progress of
the command is communicated to the user
via the CommandStatus object, which is
updated by the server.

This menu item will be
grayed out if the user
does not have
sufficient rights.

At this point, the user can
track progress of the command
through command status window.
Once the DMS is successfully re-configured,
the server pushes a DMSConfigChanged
event that is caught by the GUI and the
updated configuration is reflected in
the data model.

CommandStatus

Figure 52. GUIDMSModule:ModifyFP9500Settings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-79 11/20/00

3.6.2.26 GUIDMSModule:TrafficEventResponse-SetDMSMessage (Sequence Diagram)

This diagram shows how a message is set on a DMS in response to a traffic event. The
operator right clicks on a GUIDMSResponsePlanItem object and clicks on the “Execute”
menu item. The GUIDMSResponsePlanItem calls the execute() method of the
ResponsePlanItem object that it wraps. If successful, the server will push CORBA events
indicating the changes to the state of the DMS. The server will also push events to keep the
GUIs updated with the current status of the command.

This menu item
will be disabled if
the user does not
have rights.

Operator
GUIDMSResponsePlanItem ResponsePlanItem

The server updates the progress
of the command on the traffic
event dialog. This is possible
because the ResponsePlanItem object
is also a CommandStatus.

GUI

When a ResponsePlanItem of DMS
variety is executed, a pre-fabricated
message is set on the DMS in response
to the traffic event.
If the message was set successfully, the
server pushes a DMSStatusChanged event,
ControllingOpCtrChanged event, and
ResponsePlanStatusChanged event.
The GUIDMSModule listens to these events
and causes the updates to happen on the
appropriate GUIDMS object.

getToken

[clicks on "Execute"]
actionPerformed

execute

execute
[no rights]

AccessDenied
[not online]

CHART2Exception
[DMS in use by a

different op ctr and
no override rights]

ResourceControlConflict
[banned words]

DisapprovedMessageContent

get

Figure 53. GUIDMSModule:TrafficEventResponse-SetDMSMessage

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-80 11/20/00

3.7 GUIDictionaryModule

3.7.1 Class Diagrams

3.7.1.1 GUIDictionaryModuleClasses (Class Diagram)

This diagram shows the data hierarchy of the GUIDictionaryModule and the objects it
supports.

DictionaryWrapper
11

1
GUIDictionary

InstallableModule

UniquelyIdentifiable

CosEvent.PushConsumer

DictionaryPropertiesDialog

ModelObserver

java.awt.event.
ActionListener

javax.swing.JFrameGUIModelObserver

NavListDisplayableMenuable NavTreeDisplayable

Navigable

GUI

DataModel

GUIDictionaryModule

GUIDictionaryNavGroup

* 1

*

1

*1

1

1

*1

*

get()

getBannedWords(accessToken) :WordList
removeBannedWordList(accessToken, bannedWords)
addBannedWordList(accessToken, bannedWords)
checkForBannedWords(messageToCheck, delimiters) : WordList
bannedWordsAdded(wordList)
bannedWordsRemoved(wordList)
refreshBannedWordListCache()
getApprovedWords(accessToken) :WordList
removeApprovedWordList(accessToken, approvedWords)
addApprovedWordList(accessToken, approvedWords)
performApprovedWordsCheck(messageToCheck, delimiters) : WordList
approvedWordsAdded(wordList)
approvedWordsRemoved(wordList)
refreshApprovedWordListCache()

m_bannedWordList
m_approvedWordList

addDictionary(dictionary)

Figure 54. GUIDictionaryModuleClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-81 11/20/00

3.7.1.1.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.7.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.7.1.1.3 DictionaryPropertiesDialog (Class)

This dialog is the editing interface which allows the user to view, add, and remove banned
words from a given dictionary.

3.7.1.1.4 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.7.1.1.5 GUIDictionaryNavGroup (Class)

This class is used to support the required Navigator functionality to group anu dictionary
objects together for the purpose of being displayed together under one branch of the
Navigator tree.

3.7.1.1.6 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.7.1.1.7 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu

R1B2 GUI Detailed Design Rev. 0 3-82 11/20/00

items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.7.1.1.8 GUIDictionary (Class)

This class is a GUI wrapper for the Dictionary class. It adds functionality for caching the
data and for adding GUI-specific functionality such as menus and Navigator support.

3.7.1.1.9 GUIDictionaryModule (Class)

This class is an installable GUI module that handles all of the dictionary-specific
functionality in the GUI.

3.7.1.1.10 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.7.1.1.11 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the
left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

3.7.1.1.12 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.7.1.1.13 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.7.1.1.14 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-83 11/20/00

3.7.1.1.15 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerance by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.7.1.1.16 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.7.1.1.17 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.7.1.1.18 ModelObserver (Class)

This interface must be implemented by any object that may need to be attached to the
DataModel as an observer and get updated as system objects are added, deleted or changed.

R1B2 GUI Detailed Design Rev. 0 3-84 11/20/00

3.7.2 Sequence Diagrams
3.7.2.1 GUIDictionaryModule:DictionaryApprovedWordProperties (Sequence Diagram)

This diagram shows how the editing of the approved words in a given dictionary will be
done. It begins with a user clicking on a menu item from the GUIDictionary’s context
menu. Since the GUIDictionary will be an ActionListener for the menu item, the
GUIDictionary will be called and then creates the DictionaryDialog. This dialog attaches
itself as an observer to the DataModel in order to catch any updates to the word list (which
will come through the event channel and then through the DataModel). It gets the list of
banned and approved words and displays them to the user. This dialog shows both the
banned word and approved word lists on two tabs. Approved word list can be viewed by
selecting the Approved Words tab. When the user provides a list of approved words to add
or remove, the GUIDictionary will make a call to the served Dictionary Wrapper object. If
the words are added or removed successfully, the Dictionary object will push an event
through the Dictionary event channel. (See the EventHandling diagram for details.) The
DataModel will then call the dialog’s update() method, and the dialog will ask the
GUIDictionary wrapper for the current list of words to display. Just before the dialog is
closed, it will detach from the DataModel.

Display Error

Display Error

GUI DictionaryWrapper

If successful, the
added or removed
approved words will
be pushed back through
the Dictionary event
channel and then through
the DataModel. See the
GUIDictionaryModule:EventHandling
diagram for details.

GUIDictionary

Dictionary
Properties

Dialog

This menu item
will be disabled if
the user does not
have rights.

DataModel
User

[user selects approved words from the list and
clicks Remove Approved Words button]

getToken

removeApprovedWordList

[success]
update

getApprovedWordList

refresh
displayed

words

scroll banned
words list to match

typed word

[user selects Approved Words tab and
types a approved word]

getDataModel

[success]
update

[AccessDenied or CHART2Exception]

display dialog

[user clicks Add]
actionPerformed

getDataModel

attachObserver

[invokes dialog
from Dictionary

menu]
actionPerformed

getBannedWordList

getToken

addApprovedWordList

removeApprovedWordList

[AccessDenied or CHART2Exception]

detachObserver

addApprovedWordList

[view rights only]
disable all editing

features

show

getApprovedWordList

[user closes dialog]

getApprovedWordList

create

refresh
displayed

words

Figure 55. GUIDictionaryModule: DictionaryApprovedWordProperties

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-85 11/20/00

3.7.2.2 GUIDictionaryModule:DictionaryBannedWordProperties (Sequence Diagram)

This diagram shows how the editing of the banned words in a given dictionary will be done.
It begins with a user clicking on a menu item from the GUIDictionary’s context menu.
Since the GUIDictionary will be an ActionListener for the menu item, the GUIDictionary
will be called and then creates the DictionaryDialog. This dialog attaches itself as an
observer to the DataModel in order to catch any updates to the word list (which will come
through the event channel and then through the DataModel). It gets the list of banned and
approved words and displays them to the user. This dialog shows both the banned word and
approved word lists on two tabs. Banned word list is displayed on the top. When the user
provides a list of banned words to add or remove, the GUIDictionary will make a call to the
served Dictionary Wrapper object. If the words are added or removed successfully, the
Dictionary object will push an event through the Dictionary event channel. (See the
EventHandling diagram for details.) The DataModel will then call the dialog’s update()
method, and the dialog will ask the GUIDictionary wrapper for the current list of words to
display. Just before the dialog is closed, it will detach from the DataModel.

Display Error

Display Error

[user closes dialog]

detachObserver

GUIDictionary

Dictionary
Properties

Dialog

GUI DictionaryWrapper

If successful, the
added or removed
banned words will
be pushed back through
the Dictionary event
channel and then through
the DataModel. See the
GUIDictionaryModule:EventHandling
diagram for details.

This menu item
will be disabled if
the user does not
have rights.

DataModel
User

[user selects banned words and
clicks Remove Banned Words button]

getToken

removeBannedWordList

addBannedWordList

[user clicks Add]
actionPerformed

getDataModel

attachObserver

[invokes dialog
from Dictionary

menu]
actionPerformed

getBannedWordList

getToken

addBannedWordList

removeBannedWordList

[AccessDenied or CHART2Exception]

[success]
updategetBannedWordList

refresh
displayed

words

scroll banned
words list to match

typed word

[user types a banned word]

getDataModel

[success]
update

[AccessDenied or CHART2Exception]

display dialog

getBannedWordList

getApprovedWordList

create

refresh
displayed

words

show

[view rights only]
disable all editing

features

Figure 56. GUIDictionaryModule:DictionaryBannedWordProperties

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-86 11/20/00

3.7.2.3 GUIDictionaryModule:Discovery (Sequence Diagram)

This diagram shows how the Dictionary event channels and Dictionary objects are
discovered and added to the system. This will be a periodic process, and the GUI will call
the GUIDictionaryModule repeatedly. When the GUI asks the module to discover event
channels, it looks up the Dictionary event channels in the trader. It then creates a
PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the
consumer to the channel and reattaches it if the event service is restarted. (Duplicate
channels will be ignored). The GUI then calls the module to discover objects. At this time
the module will query the Dictionary Wrapper objects in the trader. If any are found, it will
create an Identifier to be used as a lookup key for use with the DataModel. If the
GUIDictionary wrapper object does not already exist in the DataModel, it is created and
added. Creating the GUI wrapper will cause the new wrapper to initialize its data by
making a remote call to the served Dictionary Wrapper object. The GUIDictionary is then
added to the GUIDictionaryNavGroup and the DataModel is called to propagate the
changes to any interested observers such as the DictionaryPropertiesDialog.

getClass

objectAdded(GUIDictionary)

[* for next
discovered
dictionary]

repeat

addDictionary

objectUpdated(GUIDictionaryNavGroup)

discoverEventChannels

[* for each event channel]
add

discoverObjects

query (DictionaryWrapper)

[dictionary not found]
create

getDataModel

getObject

getID

create

getBannedWords

getToken

setDictionaryClass

GUIDictionary

DataModel
DictionaryWrapper

Identifier

getApprovedWords

query (Dictionary
event channels)

[* for each event channel]
create

GUIDictionary
NavGroup

GUI
GUIDictionaryModule

CosTrading.
Lookup

PushEventConsumer

Event
Consumer

Group

Figure 57. GUIDictionaryModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-87 11/20/00

3.7.2.4 GUIDictionaryModule:EventHandling (Sequence Diagram)

This diagram shows how dictionary events are propagated through the GUI when they are
pushed from the event channel. The ORB invokes the push method of the
DictionaryEventConsumer. The event data contains a byte array identifier, which is used to
create an Identifier object to get the GUIDictionary object from the DataModel. The words
are added or removed from the wrapper’s cache, and then the DataModel is called to update
any observers that may be listening for updates, such as the DictionaryPropertiesDialog.

Corba
Event

Service

GUIDictionaryModule

Identifier

GUI DataModelGUIDictionary

objectUpdated

[Banned Words Removed]
bannedWordsRemoved

[Banned Words Removed]
remove banned
words from list

push

create

getDataModel

getObject

[Banned Words Added]
bannedWordsAdded

[Banned Words Added]
add banned
words to list

[Dictionary
 not found]

[Approved Words Added]
approvedWordsAdded

[Approved Words Added]
add approved

words to list

[Approved Words Removed]
remove approved

words from list

getDataModel

create

[Approved Words Removed]
approvedWordsRemoved

Figure 58. GUIDictionaryModule:EventHandling (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-88 11/20/00

3.7.2.5 GUIDictionaryModule:Shutdown (Sequence Diagram)

This diagram shows what happens at shutdown. The module deactivated from the POA to
clean up.

POA
GUI

GUIDictionaryModule

shutdown
deactivate_object

Figure 59. GUIDictionaryModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-89 11/20/00

3.7.2.6 GUIDictionaryModule:Startup (Sequence Diagram)

This diagram show the steps taken to initialize the GUIDictionaryModule. The GUI will
call the module’s startup method. The module will create a GUIDictionaryNavGroup and
add it to the DataModel so that the Navigator will display it. The module will store the
group for later use. The GUIDictionaryModule is activated using the POA so that it can
serve as a PushConsumer to receive dictionary events.

POA
GUI

GUIDictionaryModule

GUIDictionaryNavGroup

DataModel

activate_object

store
nav group

startup

create

getDataModel

objectAdded

Figure 60. GUIDictionaryModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-90 11/20/00

3.8 GUIHARModule

3.8.1 Class Diagrams

3.8.1.1 Dialogs (Class Diagram)

This diagram shows all of the classes representing windows that exist within the
GUIHARModule.

AudioPushListener java.awt.event.
KeyListener

java.awt.event.
ActionListener

HARMessageEditor HARPropertiesDialog SHAZAMPropertiesDialog HARStoredMsgItemPropertiesDialog

DefaultJFrame

Figure 61. Dialogs (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-91 11/20/00

3.8.1.1.1 AudioPushListener (Class)

This is called by one or more AudioPushConsumerImpls when an audio clip is being
pushed.

3.8.1.1.2 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.8.1.1.3 HARMessageEditor (Class)

This dialog is used for creating a new HAR stored message, viewing or modifying an
existing HAR stored message, and setting the message while the HAR is in maintenance
mode.

3.8.1.1.4 HARPropertiesDialog (Class)

This dialog is used to view and edit the HAR’s configuration, and to view and edit the
current slot contents.

3.8.1.1.5 HARStoredMsgItemPropertiesDialog (Class)

This dialog is used for creating, viewing, or editing the properties of HARStoredMsgItem /
GUIHARStoredMsgItem objects.

3.8.1.1.6 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.8.1.1.7 java.awt.event. KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.8.1.1.8 SHAZAMPropertiesDialog (Class)

This dialog is used for viewing and editing the properties (configuration) of a SHAZAM.

R1B2 GUI Detailed Design Rev. 0 3-92 11/20/00

3.8.1.2 HARModuleArchitecture (Class Diagram)

This diagram shows the data hierarchy of the GUIHARModule and the objects it supports.
It does not contain the user interface relationships of these objects - those are contained in
the GUIHARModule:NavigatorSupport class diagram.

SHAZAMFactory

*

1

GUIResponsePlanItemCreator

*

1

*

TTSConverter
HARFactory

1

GUILibrarySupporter

Chart2HAR

1

1

*

1

*

1

1

1

1

1

*

1

*

1

*

1

CosEvent.
PushConsumer

GUITrafficEventHolder GUIPlan

StoredMessage

GUIStoredMessageGUIPlanItemGUIResponsePlanItem

*
1

*1

*
1

GUIHARResponsePlanItem GUIHARStoredMessage

HARStoredMsgItemResponsePlanItem

GUIMessageLibrary

1

1

GUIHARStoredMsgItem

InstallableModule

GUIHARModule

GUIHAR

GUISHAZAM

SHAZAMNavGroup

*0..1

1

1

1

1

*

1

*

1

PlanItemCreationSupporter

1
1

1
1

1
1

1

1

*

1

*

1

*

1
DataModel

SHAZAM

GUIHARMessageNotifier

ResponseDataCreator

GUI

HARNavGroup

*
1

createGUIStoredMessage(StoredMessage, Message) : GUIStoredMessage
getStoredMessageCreationMenuReps(accessToken) : MenuItemRep[]
createNewGUIStoredMessage(accessToken, menuString, guiLibrary) : boolean
createLibraryType():LibraryType

setAssociatedHAR(har)
getAssociatedHAR() : GUIHAR
isHARNoticeActive() : boolean
getNotifier() : HARMessageNotifier

push

getPlanItemCreationMenuReps(accessToken) : MenuItemRep[]
createGUIPlanItem(planItem, itemID, plan) : GUIPlanItem
createNewGUIPlanItem(accessToken, menuString, plan) : boolean

createGUIResponsePlanItem(Identifier, name,
 ResponsePlanItemData) : GUIResponsePlanItem
createGUIResponsePlanItem(ResponsePlanItem) :
 GUIResponsePlanItem

remove
execute doProperties()

setMessage()
getMessageContent()

startup(orb)
discoverEventChannels(trader, eventConsumerGroup)
discoverObjects(trader, dataModel)
loggedIn()
loggedOut()
shutdown(orb)
getMenuItemReps(accessToken, Menuable[]) : MenuItemRep[]
handleCommand(actionEvent, Menuable[]) : boolean

get() : GUIHARModule
getHARFactories() : HARFactory[]
getSHAZAMFactories() : SHAZAMFactory[]
convertTextToSpeech(AudioPushListener, String) : void
createTextClip(String text) : HARMessageTextClip
createAudioDataClip(byte[]) : HARMessageAudioDataClip

doProperties()
setConfiguration(
 HARConfiguration,
 HARFactory)
getConfiguration()
getSlotUsage()
setMessage()
storeSlotMessage()
deleteSlotMessage()
addMsgNotifier(notifier)
removeMsgNotifier(notifier)
getMsgNotifiers()

doProperties()
setConfiguration (
 SHAZAMConfiguration,
 SHAZAMFactory)

createHAR()

createSHAZAM()

Figure 62. HARModuleArchitecture (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-93 11/20/00

3.8.1.2.1 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.8.1.2.2 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.8.1.2.3 GUIHAR (Class)

This class provides a GUI “wrapper” object that is used to wrap the CHART2HAR
CORBA interface and to supply GUI-specific functionality.

3.8.1.2.4 GUIHARModule (Class)

The GUIHARModule is an installable module in the GUI, and provides all functionality
specific to HAR and SHAZAM control. It requires that the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule all be installed in order to be fully
functional. If any of the other modules is not available, the functionality provided by that
module will not be available. For example, if the GUILibraryModule is not installed, the
user will not be able to create or utilize HAR library messages. Only one GUIHARModule
object may exist within the GUI. This class implements the interfaces to support the
frameworks of the GUIPlanModule, the GUILibraryModule, and the
GUITrafficEventModule.

3.8.1.2.5 GUIHARResponsePlanItem (Class)

This class provides a GUI “wrapper” object that is used to wrap a ResponsePlanItem
CORBA interface that contains HAR-specific data and to supply GUI-specific
functionality.

3.8.1.2.6 GUIHARStoredMessage (Class)

This class provides a GUI “wrapper” object that is used to wrap a StoredMessage CORBA
interface that contains HAR-specific data and to supply GUI-specific functionality.

R1B2 GUI Detailed Design Rev. 0 3-94 11/20/00

3.8.1.2.7 GUIHARStoredMsgItem (Class)

This class provides a GUI “wrapper” object that is used to wrap the HARStoredMsgItem
CORBA interface and to supply GUI-specific functionality.

3.8.1.2.8 GUIPlan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data
locally for faster access, as well as to give the Plan some GUI-specific functionality such as
menus and command handling.

3.8.1.2.9 GUIPlanItem (Class)

This is a GUI base class for all the plan items. Each GIUPlanItem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

3.8.1.2.10 GUITrafficEventHolder (Class)

 This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.8.1.2.11 GUIResponsePlanItem (Class)

This is a base class for the GUI wrapper object that is used to wrap a ResponsePlanItem.
The ResponsePlanItem represents a proposed action to perform on a target object in
response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the
response plan item.

3.8.1.2.12 GUIStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object. It
provides a user interface object which can implement whatever interfaces are necessary for
the object to exist within the GUI framework (for example, an object must support the
NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.8.1.2.13 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description, which are used to allow the user to
organize messages.

R1B2 GUI Detailed Design Rev. 0 3-95 11/20/00

3.8.1.2.14 PlanItemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module.
The modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule
will then call the supporter when it is time to display the Plan menu or to create a specific
type of plan item or GUIPlanItem.

3.8.1.2.15 GUIHARMessageNotifier (Class)

This interface is similar to the HARMessageNotifier interface in that it is implemented by
all of the message notifier classes, but this interface is specific to the GUIHARModule and
its usage of the GUI wrapper objects.

3.8.1.2.16 ResponseDataCreator (Class)

This interface enables the creation of type-specific ResponsePlanItemData objects, which
are used for creating the appropriate type of ResponsePlanItem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

3.8.1.2.17 Chart2HAR (Class)

The Chart2HAR class is an extension of the HAR that is aware of Chart2 business rules,
such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.8.1.2.18 GUIMessageLibrary (Class)

This class is a GUI “wrapper” object that is used to wrap a MessageLibrary object. The
wrapping is done to cache the data locally for faster access, as well as to give the
MessageLibrary some GUI-specific functionality such as menus and command handling.

3.8.1.2.19 GUISHAZAM (Class)

This class is a GUI wrapper object that is used to wrap a SHAZAM CORBA interface and
to provide GUI-specific functionality.

3.8.1.2.20 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system.

3.8.1.2.21 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

R1B2 GUI Detailed Design Rev. 0 3-96 11/20/00

3.8.1.2.22 GUILibrarySupporter (Class)

This class allows the GUILibraryModule to maintain stored messages that have differing
formats. When an object of this type is installed the user can create, maintain, and use the
specific type of libraries and stored messages that the object supports.

3.8.1.2.23 HARNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUIHAR objects in the module when they are displayed in the Navigator.

3.8.1.2.24 HARStoredMsgItem (Class)

This class provides a means for associating a HAR message with a HAR for use in
responding to a traffic event. A directional indicator is stored to specify the SHAZAMs to
activate (by default) when the message is activated on the specified HAR.

3.8.1.2.25 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.8.1.2.26 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanItem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.8.1.2.27 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

3.8.1.2.28 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

R1B2 GUI Detailed Design Rev. 0 3-97 11/20/00

3.8.1.2.29 GUIResponsePlanItemCreator (Class)

This interface is used to enable the creation of specific types of GUIResponsePlanItem
wrapper objects depending upon which type of ResponsePlanItem is being wrapped. Any
class wishing to create GUIResponsePlanItems must implement this interface and add
themselves to the GUITrafficEventModule at GUI startup time. When the
GUITrafficEventModule discovers a ResponsePlanItem or catches a CORBA event
indicating that a new response plan item has been created, it will call each known
GUIResponsePlanItemCreator to give it an opportunity to create a specific type of GUI
wrapper object.

3.8.1.2.30 SHAZAMFactory (Class)

This CORBA interface allows new SHAZAM objects to be added to the system.

3.8.1.2.31 SHAZAMNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUISHAZAM objects in the module when they are displayed in the Navigator.

R1B2 GUI Detailed Design Rev. 0 3-98 11/20/00

3.8.1.3 NavigatorSupport (Class Diagram)

This diagram shows the user interface relationships of the objects supported by the
GUIHARModule.

java.awt.event.ActionListener

Droppable

*1*1

*
1

NavTreeDisplayable
Menuable

NavListDisplayable

Navigable

GUIHAR
GUISHAZAMHARNavGroup SHAZAMNavGroup GUIHARResponsePlanItem GUIHARStoredMsgItem GUIHARStoredMessage

getNavParent() : NavTreeDisplayable
containsChildNavigable(Navigable) : boolean
getChildNavigables() : Navigable[]
getNavPropertyList() : String []

getMSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]
getSSMenuItemReps(accessToken, Component invoker) : MenuItemRep[]

getPropertyValue(property) : String
comparePropertyValues(property, val1, val2) : int

getImage()
getDesc()
allowSetDesc()
setDesc()

Figure 63. NavigatorSupport (Class Diagram)

3.8.1.3.1 GUIHAR (Class)

This class provides a GUI “wrapper” object that is used to wrap the CHART2HAR
CORBA interface and to supply GUI-specific functionality.

3.8.1.3.2 GUIHARResponsePlanItem (Class)

This class provides a GUI “wrapper” object that is used to wrap a ResponsePlanItem
CORBA interface that contains HAR-specific data and to supply GUI-specific
functionality.

R1B2 GUI Detailed Design Rev. 0 3-99 11/20/00

3.8.1.3.3 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.8.1.3.4 GUIHARStoredMessage (Class)

This class provides a GUI “wrapper” object that is used to wrap a StoredMessage CORBA
interface that contains HAR-specific data and to supply GUI-specific functionality.

3.8.1.3.5 GUIHARStoredMsgItem (Class)

This class provides a GUI “wrapper” object that is used to wrap the HARStoredMsgItem
CORBA interface and to supply GUI-specific functionality.

3.8.1.3.6 GUISHAZAM (Class)

This class is a GUI wrapper object that is used to wrap a SHAZAM CORBA interface and
to provide GUI-specific functionality.

3.8.1.3.7 HARNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUIHAR objects in the module when they are displayed in the Navigator.

3.8.1.3.8 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.8.1.3.9 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the
left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

R1B2 GUI Detailed Design Rev. 0 3-100 11/20/00

3.8.1.3.10 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.8.1.3.11 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.8.1.3.12 SHAZAMNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUISHAZAM objects in the module when they are displayed in the Navigator.

3.8.1.3.13 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

R1B2 GUI Detailed Design Rev. 0 3-101 11/20/00

3.8.2 Sequence Diagrams
3.8.2.1 GUIHARModule:AddHAR (Sequence Diagram)

This diagram shows how a HAR is added to the system. The user right clicks on the
HARNavGroup in the Navigator and clicks “Add HAR”. The HARNavGroup then creates
a temporary GUIHAR wrapper object and calls it to display its properties, which invokes
the HAR Properties dialog. When the user clicks OK, the dialog calls the GUIHAR to set
the configuration. The GUIHAR wrapper object does not contain a served CHART2HAR
object, so it calls the HARFactory to create one. If a new CHART2HAR is successfully
created, the server will push out an event and the GUI will create a new GUIHAR object to
wrap it. The temporary GUIHAR object will be deleted.

get
getHARFactories

[* for each factory]
getName

[no factory selected]
get

GUIHARModule

doProperties

[cancel]
closeWindow

getToken

CommandStatusHandler

CommandStatus

get

getCommandStatusHandler
createCommandStatus

create

GUI

[No factory found]
"Display Error"

[factory not found]

createHAR
[no rights]

AccessDenied
[other error]

CHART2Exception
[error]

GUIException
[error]

"Display Error"

[error]

closeWindow

The menu item will be
grayed out if the user
does not have rights.

Administrator

HARNavGroup
HARFactory

GUIHAR

HARPropertiesDialog

[no factory selected]
[CORBA comm failure]

[* for next factory]
If successful,
a HARAdded event will be
pushed by the server.

This temporary GUIHAR object
will be deleted. When the
HARAdded event is received from
the server (or when the HAR is
discovered during the next
discovery cycle), the "real" GUIHAR
object will be added to the GUI's
DataModel.

["Add HAR"
menu item clicked]
actionPerformed

create

create

show

actionPerformed

[cancel]

[no factory selected]
getHARFactories

setConfiguration

[no factory found]
GUIException

Figure 64. GUIHARModule:AddHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-102 11/20/00

3.8.2.2 GUIHARModule:AddHARStoredMessageItem (Sequence Diagram)

This diagram shows how a PlanItem is added to the system. The user clicks on the GUIPlan
object in the Navigator and chooses “Create HAR Plan Item”. The GUIPlan then calls the
PlanItemCreationSupporters (of which the GUIHARModule is one) to create the
GUIPlanItem, and the GUIHARModule recognizes the menu item string. The module
creates a temporary GUI wrapper for a plan item and calls it to display its properties, which
invokes the HARStoredMsgItemPropertiesDialog. When the user clicks Apply or OK, the
dialog calls back to the GUIHARStoredMsgItem wrapper object to set the item data. Since
the wrapper contains no served PlanItem, it calls the CHART2HAR to create one. If
successful, the server will push a PlanItemAdded event to all GUIs, which the GUI will
catch to create a new GUIHARStoredMsgItem wrapper object (the temporary wrapper will
be deleted).

getPlan

getObjectsOfType
(GUIHARStoredMessage)

show

actionPerformed

setMsgItemData

create

addItem

[Cancel]

[no rights]
AccessDenied

[other error]
CHART2Exception

[error]
GUIException

[error]
"Display Error"

[error]

doProperties

GUI
GUIPlan GUIHARModule

DataModel CHART2HAR Plan

The window is
left open to allow
the user to create
multiple plan items
in succession

get

getDataModel

This menu item
will be disabled if
the user does not
have sufficient rights.

GUIHARStoredMsgItem

HARStoredMsgItemPropertiesDialog

Operator This dialog will allow
the user to select
a HAR and a Stored Message
to play on it when the item
is activated.

This temporary GUIHARStoredMsgItem object
will be deleted. When the
PlanItemAdded event is pushed,
the GUIPlanModule will catch it and
ask the PlanItemCreationSupporters
to create a GUIPlanItem. The
GUIHARModule will then create a
GUIHARStoredMsgItem and add it into the
DataModel.

["Create Plan Item"
menu item clicked]
actionPerformed createNewGUIPlanItem

create

setDirection

HARPlanItemData

setHAR
setMessage

create

getObjectsOfType
(GUIHAR)

Figure 65. GUIHARModule:AddHARStoredMessageItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-103 11/20/00

3.8.2.3 GUIHARModule:AddSHAZAM (Sequence Diagram)

This diagram shows how a SHAZAM is added to the system. The user right clicks on the
SHAZAMNavGroup object in the Navigator and clicks “Add SHAZAM”. The
SHAZAMNavGroup then creates a temporary GUISHAZAM wrapper object and calls it to
display its properties, which invokes the SHAZAM Properties dialog. When the user clicks
OK, the dialog calls the GUISHAZAM to set the configuration. The GUISHAZAM
wrapper object does not contain a served SHAZAM object, so it calls the SHAZAMFactory
to create one. If a new SHAZAM is successfully created, the server will push out an event
and the GUI will create a new GUISHAZAM object to wrap it. The temporary
GUISHAZAM object will be deleted.

getSHAZAMFactories
[* for each factory]

getName

[no factory selected]
get

doProperties

[cancel]
closeWindow

[no factory selected]
[CORBA comm error]

[* for next factory]

getToken

Administrator

SHAZAMNavGroup
SHAZAMFactory

GUISHAZAM
SHAZAMPropertiesDialog

GUIHARModule

If successful,
a SHAZAMAdded event will be
pushed by the server.

This temporary GUISHAZAM object
will be deleted. When the
SHAZAMAdded event is received from
the server (or when the HAR is
discovered during the next
discovery cycle), the "real" GUISHAZAM
object will be added to the GUI's
DataModel.

The menu item will
be disabled if the user
does not have rights.

["Add SHAZAM"
menu item clicked]
actionPerformed

create

create

show

actionPerformed

setConfiguration

[no factory selected]
getSHAZAMFactories

[No factory found]
"Display Error"

createSHAZAM

[error]
"Display Error"

closeWindow

[cancel]

[no factory found]
GUIException

[factory not found]

GUI CommandStatusHandler

CommandStatus

get

getCommandStatusHandler
createCommandStatus

get

[no rights]
AccessDenied

[other error]
CHART2Exception

[error]
GUIException

[error]

Figure 66. GUIHARModule:AddSHAZAM (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-104 11/20/00

3.8.2.4 GUIHARModule:AssociateMessageNotifier (Sequence Diagram)

This diagram shows how a HAR message notifier (SHAZAM or DMS) is associated with a
HAR. The administrator drags the GUIHARMessageNotifier object over the GUIHAR
object in the Navigator. The drop will be rejected if the HARNotifier is active. When the
object is dropped onto the GUIHAR, the GUIHAR wrapper calls the CHART2HAR server
object to add the message notifier. If successful, the server will push an event and the GUI
will catch the event and associate the GUIHAR wrapper object with the
GUIHARMessageNotifier.

CommandStatusHandler

CommandStatusImpl

[error]
completed (failure reason)

completed (success)

getCommandStatusHandler

GUI
Administrator

GUIHAR GUIHARMessageNotifier CHART2HAR

If successful, the server will push a
HARConfigurationChanged event,
and the GUI will catch the event
and associate the GUIHAR with
 the GUIMessageNotifier.

[GUIHARMessageNotifier
object dropped

on the GUIHAR object]
handleDrop

[GUIHARMessageNotifier
object dragged over

GUIHAR object]
allowDrop

isHARNoticeActive

[no rights]
"Reject Drag Operation"

[HAR notifier active]
"Reject Drag Operation"

"Accept Drag Operation"

[no rights]
"Reject Drop Operation"

[error]
"Reject Drop Operation"

addMsgNotifier

[no rights]
AccessDenied

[notifier currently active]
HARMessageNotifierActive

get

getToken

"Accept Drop Operation"

createCommandStatus create

Figure 67. GUIHARModule:AssociateMessageNotifier (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-105 11/20/00

3.8.2.5 GUIHARModule:BlankHAR (Sequence Diagram)

This diagram shows how a HAR is blanked when it is online. To blank the HAR, the
response item must be removed from the event or the event must be closed. This may be
done by right clicking on the GUIHARResponsePlanItem or on the GUITrafficEvent
objects, respectively, and choosing the appropriate menu item. Either way, the remove
method of the GUIHARResponsePlanItem wrapper object will be called, which will in turn
call the served ResponsePlanItem object which it wraps. If successful, the server will push
events to all GUIs indicating the changed status.

CommandStatusHandler

CommandStatusImpl

getCommandStatusHandler
createCommandStatus create

completed (success or failure reason)

ResponsePlanItem

If successful, this
will cause the server to
push a HARStatusChanged,
ControllingOpCtrChanged,
ResponsePlanStatusChanged,
and SHAZAMStatusChanged or
DMSStatusChanged events.

GUI

[removes response
item from event or

closes event]
remove get

getToken

remove
[no rights]

AccessDenied
[not online]

CHART2Exception
[HAR in use by a

different op ctr and
no override rights]

ResourceControlConflict

Operator
GUIHARResponsePlanItem

Figure 68. GUIHARModule:BlankHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-106 11/20/00

3.8.2.6 GUIHARModule:BlankHARInMaintenanceMode (Sequence Diagram)

This diagram shows how a HAR is blanked when it is in maintenance mode. The user right
clicks on the GUIHAR object and chooses the “Blank” menu item. The GUIHAR object
creates a CommandStatus and then calls the CHART2HAR served object which the
GUIHAR wraps. If successful, the server will push events indicating the changed status.

If successful, this will push a
HARStatusChanged event.
If the HAR was in use, it
may also push a
ControllingOpCtrChanged event.

Administrator
GUIHAR CHART2HAR

This menu item will be
disabled if the user does not
have rights or if the device is
not in maintenance mode.

GUI CommandStatusHandler

CommandStatus

The server will update
the CommandStatus
to show the progress
or failure of the command.

[clicks on "Blank" menu item]
actionPerformed

get
getToken

getCommandStatusHandler
createCommandStatus

blank

[in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

create

Figure 69. GUIHARModule:BlankHARInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-107 11/20/00

3.8.2.7 GUIHARModule:CreateHARStoredMessage (Sequence Diagram)

This diagram shows how a HAR stored message is created. First, the user right clicks on the
GUIMessageLibrary object, which calls the GUILibraryModule to get the installed message
creators. Each message creator returns menu items for message types that it can create.
When the user clicks on the appropriate message type, the GUIMessageLibrary object is
called again, and this time it asks each message creator to create the correct type of message
based on the menu item. The GUIHARModule creates a temporary
GUIHARStoredMessage object to edit, and calls doProperties to show the
HARMessageEditor dialog. As the user types, any banned words will be shown to the user.
When the user clicks OK, the non-approved words will be displayed to the user. Once the
results of the approved words check are accepted by the user, the message editor will create
a new HARMessage object and will call setMessage on the GUIHARStoredMessage
wrapper object. Since the wrapper does not contain a served StoredMessage object, it calls
the message library to create one. If successful, the server will create a new StoredMessage
object and will push an event to update all of the GUIs.

R1B2 GUI Detailed Design Rev. 0 3-108 11/20/00

The suggested words will probably be
displayed in a separate dialog similar to
a spell check dialog, but that is left for
implementation.

[OK clicked]
actionPerformed

[suggested words]

If successful, the
server will push a
StoredMessageAdded
event

GUIMessageLibrary
GUILibrary
SupporterNavTree GUI

[right click]
makeMenu

[* for each GUILibrarySupporter]
getStoredMessageCreationMenuReps

[right click]
mousePressed

getSSMenuItemReps

MenuItemRep[]

""Display
Menu"

[other error]
CHART2Exception

setHeader

setTrailer
setBody

[error]
GUIException [error]

GUIException
[error]

"Display Error"
[error]

closeWindow

get
getLibrarySupporters

GUIHARModuleGUILibraryModule

[user clicks on "New
HAR Stored Message"]

actionPerformed get
getLibrarySupporters

createNewGUIStoredMessage

[* for each library supporter
until the GUIHARModule]

createNewGUIStoredMessage
false

Operator

"Display Suggestions"

checkForBannedWords
[banned words]

WordList
"Display

Banned Words"

[types text for message]
keyPressed

performApprovedWordsCheck
[non-approved words]

WordList

GUIHARStoredMessage

HARMessageEditor

HARMessage

MessageLibrary

This temporary GUIHARStoredMessage
object will be deleted. When the server
pushes the StoredMessageAdded event,
the GUILibraryModule will catch the event
and ask all of the GUIStoredMessageCreator
objects to create a new GUIStoredMessage.
When one does, the GUILibraryModule will
add the GUIStoredMessage to the DataModel.

GUIDictionary

create

doProperties
create

show

true

[cancel clicked]
actionPerformed

closeWindow

create

setMessage

get
getToken

createStoredMessage

returns
suggested words

The HARMessageClip
objects must be created first.
This is not shown here due
to space limitations.

MenuItemRep[]JMenu

createStoredMessage

[no rights]
AccessDenied

[bad message content]
DisapprovedMessageContent

Figure 70. GUIHARModule:CreateHARStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-109 11/20/00

3.8.2.8 GUIHARModule:CreateResponsePlanItem (Sequence Diagram)

This diagram shows how a HAR response plan item is added to the system. The user drags
a GUIHAR or a GUIPlanItem object over the GUITrafficEventHolder (the object
representing the traffic event in the GUI) and drops it. Since the GUIHAR and
GUIHARMsgItem objects both implement the ResponseDataCreator interface, the
GUITrafficEventModule uses either of these to create a HARResponsePlanItemData, which
it then uses to create a ResponsePlanItem. See the sequence diagram:
GUITrafficEventModule:AddResponsePlanItem for details.

The dragging of GUIHAR and GUIHARStoredMessageItem objects to a
GUITrafficEventHolder to create a response plan item is described in the
sequence diagram: GUITrafficEventModule:AddResponsePlanItem. Both
the GUIHAR and the GUIHARStoredMessageItem serve as
ResponseDataCreators (an interface which they implement).

Figure 171. GUIHARModule:CreateResponsePlanItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-110 11/20/00

3.8.2.9 GUIHARModule:DeleteHARMessageFromController (Sequence Diagram)

This diagram shows how a message is deleted from a HAR controller’s slot. The
administrator does this from the HAR Properties Dialog, and clicks on the “Delete” button
when viewing the slot contents. The dialog calls the GUIHAR wrapper object to delete the
message, which in turn calls the CHART2HAR object that it wraps (after creating a
CommandStatus object).

The server will
update the
CommandStatus
object to show the
progress or failure
of the command.

Administrator
HARPropertiesDialog

CommandStatus

CommandStatusHandler
GUI GUIHAR CHART2HAR

If successful, this will push
push a HARStatusChanged
message

[clicks on "Delete Message"]
actionPerformed

get
getToken

getCommandStatusHandler
createCommandStatus

create

deleteSlotMessage

deleteSlotMessage
[no rights]

accessDenied
[not in maintenance mode]

CHART2Exception

[HAR under control of
another op ctr and no rights]

ResourceControlConflict[error]
GUIException

[error]
"Display Error"

[error]

Figure 72. GUIHARModule:DeleteHARMessageFromController

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-111 11/20/00

3.8.2.10 GUIHARModule:Discovery (Sequence Diagram)

This diagram shows the event channel and object discovery, which is done after startup and
periodically thereafter. In event channel discovery, the module queries the event channels
from the trading service and creates a PushConsumer to receive the CORBA events, then
adds each to the EventConsumerGroup for maintenance of the event channel. In object
discovery, the HAR module looks for any HARFactory objects in the trader, and asks for
all of the HARs served by each factory. A GUIHAR wrapper object is created and added to
the DataModel, and the GUIHARMessageNotifiers are associated to the HAR (if the
message notifiers are already in the DataModel). The HAR module then gets the
SHAZAMFactory objects from the trader and gets all of the SHAZAM objects served by
each factory. Then it associates the GUISHAZAM objects with the GUIHAR objects (if
appropriate and the GUIHAR object is in the DataModel). The HAR module also queries
the TTSConverter objects from the trader, to call when text-to-speech conversion is
required.

The processing of the discovered objects will actually be done on
another thread after they are queried from the trader, to avoid
tying up the discovery thread in case there are delays such as CORBA
comm errors. This other thread is not shown here due to space limitations, but
it would first process the CHART2HAR objects, then the SHAZAM objects.

TTSConverter

[* for each TTSConverter until one returns successfully]
getSupportedFormats

objectAdded

HARFactory SHAZAMFactory

getResources

[* for each
HARFactory]

[* for each
SHAZAMFactory]

getResources

query(
TTSConverter

objects)

query (
SHAZAMFactory

objects)

CHART2HAR HARMessageNotifierDataModel

GUIHAR

GUISHAZAM

Any GUIDMS associated with a HAR
will have to add itself to the GUIHAR
as a message notifier if the GUIHAR
 is in the DataModel when the DMS
is discovered, similar to the SHAZAM
loop below.

SHAZAM
GUIHAR

MessageNotifier

getID

getObject
[not found]

create

objectAdded

[* for each
HAR]

getMsgNotifiers

getID
getObject

[GUIHARMsgNotifier exists]
addMsgNotifier

[* for each
HARMessageNotifier

contained in HAR]

getID

getObject

[not found]
create

[GUISHAZAM created]
getAssociatedHAR

[GUISHAZAM created and
HAR is associated]

getID

[GUIHAR found]
addMsgNotifier

[GUISHAZAM created and
HAR is associated]

getObject

setAssociatedHAR

setAssociatedHAR

GUI
Discovery

Thread
GUIHARModule

CosTrading.
Lookup

PushEvent
Consumer

Event
Consumer

Group

discoverEventChannels query
(HAR and
SHAZAM

event channels)

create

add

[* for each
event channel

found]

discoverObjects

[* for each
SHAZAM]

query
(HARFactory

objects)

Figure 73. Discovery:Basic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-112 11/20/00

3.8.2.11 GUIHARModule:ListenToAudioClip (Sequence Diagram)

This diagram shows how an audio clip is played from the GUI. The user clicks on the play
button in the message editor or HAR properties dialog, and the dialog creates an
AudioPushConsumerImpl, activates the object via the CORBA POA, and calls the
HARMessageAudioClip to stream the message. The server will then call the
AudioPushConsumerImpl to report the format of the audio and to stream the chunks of
data. The AudioPushConsumerImpl will call the dialog, as it implements the
AudioPushListener interface. The dialog will open, write to, and close the SourceDataLine
that represents the audio output.

This will be called on a different
thread by the server to report
the streamed data.

get

"Display Error"

get

close

open

close

pushAudio

[error]
"Display Error"

GUI
Operator

HARMessageEditor
or

HARPropertiesDialog

pushFailure

HARMessage
AudioClip

[clicks on play button]
actionPerformed

javax.sound.sampled.
SourceDataLine

stream

pushAudioProperties

pushAudio

[failure]
pushFailure

[error]
AudioClipNotFound

or CHART2Exception

[line in use, invalid format, or other error]
GUIException

[* for each
chunk of

audio data]

[error]
"Display Error"

[number of bytes streamed ==
total number of bytes]

closeAudioSourceDataLine

closeAudioSourceDataLine

write

create

get
getPOA

activate_object (AudioPushConsumerImpl)

pushAudioProperties

The PushConsumerImpl will
actually use the invokeLater()
command in javax.SwingUtilities
to report the results on the AWT
event thread. This is necessary to
avoid threading conflicts in the
GUI components and/or the
SourceDataLine.

System

This button will be
disabled if a clip is
already being played
in the dialog.

AudioPushConsumerImpl

org.omg.PortableServer.
POA

openAudioSourceDataLine

Figure 74. GUIHARModule:ListenToAudioClip (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-113 11/20/00

3.8.2.12 GUIHARModule:ListenToTextClip (Sequence Diagram)

This diagram shows how text is played as audio for the user for review. From the HAR
Message Editor or HAR Properties Dialog, the user would click on the “Play” button. If a
text clip is being played, the dialog would get the text from the clip. Then it would create an
AudioPushConsumerImpl to listen for the results, then call the GUIHARModule to convert
to text. The module would get the playback format stored in the system profile (or use the
default format if no playback format property is found), and call the TTSConverter to
convert the text to speech. The system would then call back to the
AudioPushConsumerImpl to stream the data. The AudioPushConsumerImpl would then
cause the AudioPushListener (i.e., the dialog) to be called on the main thread to report the
results.

[error]

[clicks on play button]
actionPerformed

create

get

getPOA

GUIHARModule

The PushConsumerImpl will
actually use the invokeLater()
command in javax.SwingUtilities
to report the results on the AWT
event thread. This is necessary to
avoid threading conflicts in the
GUI components and/or the
SourceDataLine.

GUIProfile

get

AudioPush
ConsumerImpl

org.omg.PortableServer.
POA

[text clip]
convertTextToSpeech

get

getSystemProfile

getProperty ("Audio playback format")

[error]
GUIException

[format not
supported by the
TTSConverter]
GUIException

[error]
"Display Error"

javax.sound.sampled.
SourceDataLine

This will be called on a different
thread by the server to report
the streamed data.

write
get

[number of bytes streamed ==
total number of bytes]

closeAudioSourceDataLine

[failure]
pushFailure

pushFailure

"Display Error"

get
closeAudioSourceDataLine close

pushAudio

[error]
AudioClipNotFound

or CHART2Exception

[line in use, invalid format, or other error]
GUIException

close

activate_object (AudioPushConsumerImpl)

convertTextToSpeech

[error]
"Display Error"

pushAudioProperties
pushAudioProperties

openAudioSourceDataLine

[error]
"Display Error"

[* for each
chunk of

audio data]

pushAudio

open

GUI

Operator

HARMessageEditor
or

HARPropertiesDialog TTSConverter

System

This button will be
disabled if a clip is
already being played
in the dialog.

Figure 75. GUIHARModule:ListenToTextClip (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-114 11/20/00

3.8.2.13 Login:Basic (Sequence Diagram)

This diagram shows what happens during login. The GUI calls each InstallableModule’s
loggedIn() method, but the GUIHARModule does not do any work at login.

User

Currently the module
does not perform any
work on login.

loggedIn

"Login"
or

"Change User"

GUI GUIHARModule

Figure 76. Login:Basic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-115 11/20/00

3.8.2.14 GUIHARModule:Logout (Sequence Diagram)

This diagram shows what happens when the user logs out. The GUI calls all of the
InstallableModule objects’ loggedOut() methods, but the GUIHARModule currently does
nothing during logout.

User

GUI GUIHARModule

The module currently
does not perform
any work at logout.

"Logout"
or

"Change User" loggedOut

Figure 77. GUIHARModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-116 11/20/00

3.8.2.15 GUIHARModule:ModifyHARSettings (Sequence Diagram)

This diagram shows how the HAR settings are modified. The user right clicks on the
GUIHAR object in the Navigator and clicks on the “Properties” menu item. The GUIHAR
object then creates a HARPropertiesDialog, which calls back to the GUIHAR to get the
configuration and slot usage to initialize itself with. The GUIHAR wrapper object then calls
the CHART2HAR object in the server to get this information. After the administrator is
done editing the configuration, clicking on the “OK” button will cause the dialog to call the
GUIHAR object’s setConfiguration() method. The GUIHAR will create a CommandStatus
object and will call the CHART2HAR that it wraps to set the configuration. If successful,
the server will push a CORBA event indicating that the configuration has changed.

R1B2 GUI Detailed Design Rev. 0 3-117 11/20/00

HARConfigurationcreate

The server will update
the CommandStatus
object to show the
progress or failure of
the command.

See the ViewHARSlotUsage
sequence diagram for more
details.

getConfiguration

getSlotUsage

[other error]
CHART2Exception

[no rights]
AccessDenied

[error]
GUIException

CommandStatus

GUI CommandStatusHandler

getConfiguration

get
getCommandStatusHandler

createCommandStatus
create

getToken

GUIHAR

HARPropertiesDialog

The menu item will be
grayed out if the user
does not have rights or
if the HAR is not in
maintenance mode.

Administrator CHART2HAR

If successful, a
HARConfigurationChanged
event will be pushed by the server
and caught by the GUI.

[clicks on "HAR Properties"
menu item]

actionPerformed
create

show

actionPerformed

setConfiguration

[cancel]

setConfiguration
[not in maintenance mode]

CHART2Exception
[no rights]

AccessDenied
[error]

GUIException
[error]

"Display Error"
[error]

[no rights]
AccessDenied

[other error]
CHART2Exception

[error]
GUIException

[error]
"Display Error"

There may also be messages to delete
from the slots (very similar to storeSlotMessage())
but deleteSlotMessage() is not shown here due to
space limitations. See the DeleteHARMessageFromController
diagram for details.

[* for each changed slot message]
storeSlotMessage

get
getCommandStatusHandler

getToken create

[error]
"Display Error"

[status not cached]
getStatus

If successful, a
HARStatusChanged event will
be pushed by the server.

storeSlotMessage
[no rights]

AccessDenied
[disapproved message content]
DisapprovedMessageContent

[other error]
CHART2Exception

[error]
GUIException

[error]
"Display Error"

[error]

createCommandStatus

closeWIndow

Figure 78. GUIHARModule:ModifyHARSettings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-118 11/20/00

3.8.2.16 GUIHARModule:ModifyHARStoredMessage (Sequence Diagram)

This diagram shows how the contents of a stored message are modified. The user clicks on
an existing GUIHARStoredMessage object in the Navigator, and clicks on the “Properties”
menu item. The GUIHARStoredMessage then invokes the HARMessageEditor dialog. On
initialization, the dialog calls back to the GUIHARStoredMessage wrapper object to get the
message content, which calls back to the StoredMessage object in the server if the message
is not already cached in the wrapper object. When the HARMessage is returned, the dialog
can be initialized from the existing message contents. As the user types in text for the
message, the banned words will be displayed. When the user clicks “OK”, the dialog first
checks the non-approved words and displays them, or if all words are approved, it calls the
GUIHARModule to create the audio or text clips for the header, body, and trailer of the
message. These clips are then set into the HARMessage, and the dialog calls the
GUIHARStoredMessage to set the message, which in turn calls the StoredMessage object
in the server. If successful, the server will push a CORBA event to update the GUIs.

The suggested words may
be shown in a separate
dialog similar to a spell checker,
but this is left for implementation.

[OK clicked]
actionPerformed

[suggested words]

GUIHARModule

These methods may return
exceptions, which are not shown
here due to space limitations.
If an exception is caught, the error
will be displayed in the dialog
and the dialog will remain open.

If successful, the
server will push a
StoredMessageChanged
event

Operator

HARMessageEditor

GUIHARStoredMessage StoredMessage HARMessage GUIDictionary GUI

The menu item will
be disabled if the
user does not
have rights

[clicks on
"Properties"]

actionPerformed create

show

[cancel clicked]
actionPerformed

getMessageContent
[message not cached]

getMessage

HARMessageContent

getHeader
getBody

getTrailer

"Initialize Dialog"

HARMessageContent

setHeader
setBody

setTrailer

[types text for message]
keyPressed

performApprovedWordsCheck

The user may also listen to the
contents of the message.
See the ListenToHARMessage
sequence diagram for details.

get
[audio was recorded]

createAudioDataClip(byte[])
[text was changed]

createTextClip(string)

[* for header, body,
and trailer]

[non-approved words]
String []

"Display
Suggested Words"

checkForBannedWords
[banned words]

String []
"Display

Banned Words"

closeWindow
[cancel]

setMessage

setMessage
[no rights]

AccessDenied

get
getToken

[contains banned words]
DisapprovedMessageContent

[other error]
CHART2Exception

[error]
GUIException

[error]
"Display Error"

[error]

closeWindow

Figure 79. GUIHARModule:ModifyHARStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-119 11/20/00

3.8.2.17 GUIHARModule:ModifySHAZAMSettings (Sequence Diagram)

This diagram shows how the SHAZAM settings are modified. The user right clicks on the
GUISHAZAM object in the Navigator and clicks on the “Properties” menu item. The
GUISHAZAM object then creates a SHAZAMPropertiesDialog, which calls back to the
GUISHAZAM to get the configuration and slot usage to initialize itself with. The
GUISHAZAM wrapper object then calls the SHAZAM object in the server to get this
information if it is not already cached. After the administrator is done editing the
configuration, clicking on the “OK” button will cause the dialog to call the GUISHAZAM
object’s setConfiguration() method. The GUISHAZAM will create a CommandStatus
object and will call the SHAZAM that it wraps to set the configuration. If successful, the
server will push a CORBA event indicating that the configuration has changed.

SHAZAMConfigurationcreate

The server will update
the CommandStatus
object to show the
progress or failure of
the command.

getConfiguration

[error]
"Display

Error"

closeWIndow

[not in maintenance mode]
CHART2Exception

AccessDenied
[error]

GUIException

[error]

CommandStatus

GUI CommandStatusHandlerGUISHAZAM

SHAZAMPropertiesDialog

The menu item will be
grayed out if the user
does not have rights or
if the SHAZAM is in
maintenance mode.

Administrator SHAZAM

If successful, a
SHAZAMConfigurationChanged
event will be pushed by
the server and caught
by the GUI.

[clicks on "SHAZAM Properties"
menu item]

actionPerformed

[configuration not already cached]
getConfiguration

create

show
[OK clicked]

actionPerformed
setConfiguration

get
getCommandStatusHandler

createCommandStatus

getToken create

setConfiguration

Figure 80. GUIHARModule:ModifySHAZAMSettings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-120 11/20/00

3.8.2.18 GUIHARModule:PutHARInMaintenanceMode (Sequence Diagram)

This diagram shows how a HAR is put into maintenance mode. The Administrator right
clicks on a GUIHAR in the Navigator and clicks on the “Put In Maintenance Mode” menu
item. The GUIHAR creates a CommandStatus object to monitor the progress of the
command and calls the CHART2HAR object (which it wraps) to put it in maintenance
mode. If successful, the server will push a CORBA event indicating that the comm mode
has been changed.

The server will
update the CommandStatus
object to show the progress
or failure of the command.

If successful, this will push a
HARStatusChanged event.
If the HAR was in use, it may
also push ControllingOpCtrChanged
and ResponsePlanItemStatusChanged
 events. The GUI will catch these events
and will update the GUI wrapper
objects as needed.

getToken
getCommandStatusHandler

createCommandStatus
create

putInMaintenanceMode

[in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

Administrator
GUIHAR CHART2HAR

This menu item will be
disabled if the user does not
have rights or if the device is
already in maintenance mode.

GUI CommandStatusHandler

CommandStatus

[clicks on "Put In Maintenance
 Mode" menu item]
actionPerformed get

Figure 81. GUIHARModule:PutHARInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-121 11/20/00

3.8.2.19 GUIHARModule:PutHAROnline (Sequence Diagram)

This diagram shows how a HAR is put online. The Administrator right clicks on a
GUIHAR in the Navigator and clicks on the “Put Online” menu item. The GUIHAR creates
a CommandStatus object to monitor the progress of the command and calls the
CHART2HAR object (which it wraps) to put it online. If successful, the server will push a
CORBA event indicating that the comm mode has been changed.

The server will update
the CommandStatus
object to show the
progress or failure of the
command.

[online]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

If successful, this will push a
HARStatusChanged event.

Administrator
GUIHAR CHART2HAR

This menu item will be
disabled if the user does not
have rights or if the device is
already online.

GUI CommandStatusHandler

CommandStatus

[clicks on "Put Online" menu item]
actionPerformed

get
getToken

getCommandStatusHandler
createCommandStatus

putOnline
create

Figure 82. GUIHARModule:PutHAROnline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-122 11/20/00

3.8.2.20 GUIHARModule:PutSHAZAMInMaintenanceMode (Sequence Diagram)

This diagram shows how a SHAZAM is put into maintenance mode. The Administrator
right clicks on a GUISHAZAM object in the Navigator and clicks on the “Put In
Maintenance Mode” menu item. The GUISHAZAM creates a CommandStatus object to
monitor the progress of the command and calls the SHAZAM object (which it wraps) to put
it in maintenance mode. If successful, the server will push a CORBA event indicating that
the comm mode has been changed.

The server will update
the CommandStatus
object to show the
progress or failure of the
command.

putInMaintenanceMode
create

[in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

[SHAZAM controlled by
different op ctr and
no override rights]

ResourceControlConflict

If successful, this will push a
SHAZAMStatusChanged
event. If the SHAZAM was
in use, it may also push a
ControllingOpCtrChanged event.
The GUI will catch these events
and will update the GUI wrapper
object as needed.

Administrator
GUISHAZAM SHAZAM

This menu item will be
disabled if the user does not
have rights or if the device is
already in maintenance mode.

GUI CommandStatusHandler

CommandStatus

[clicks on "Put In Maintenance
 Mode" menu item]
actionPerformed get

getToken
getCommandStatusHandler

createCommandStatus

Figure 83. GUIHARModule:PutSHAZAMInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-123 11/20/00

3.8.2.21 GUIHARModule:PutSHAZAMOnline (Sequence Diagram)

This diagram shows how a SHAZAM is put online. The Administrator right clicks on a
GUISHAZAM object in the Navigator and clicks on the “Put Online” menu item. The
GUISHAZAM creates a CommandStatus object to monitor the progress of the command
and calls the SHAZAM object (which it wraps) to put it online. If successful, the server will
push a CORBA event indicating that the comm mode has been changed.

createCommandStatus
create

putOnline

[online]
CHART2Exception

[no rights]
AccessDenied

[SHAZAM controlled by
different op ctr and
no override rights]

ResourceControlConflict

The server will update
the CommandStatus
object to show the
progress or failure of the
command.

If successful,
the server will push a
SHAZAMStatusChanged event.

Administrator
GUISHAZAM SHAZAM

This menu item will be
disabled if the user does not
have rights or if the device is
already online.

GUI CommandStatusHandler

CommandStatus

[clicks on "Put Online" menu item]
actionPerformed

get
getToken

getCommandStatusHandler

Figure 84. GUIHARModule:PutSHAZAMOnline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-124 11/20/00

3.8.2.22 GUIHARModule:RemoveHAR (Sequence Diagram)

This diagram shows how a HAR is removed from the system. The Administrator right
clicks on a GUIHAR object in the Navigator and clicks on the “Remove HAR” menu item.
The GUIHAR creates a CommandStatus object to monitor the progress of the command
and calls the remove() method of the CHART2HAR object (which it wraps). If successful,
the server will push a CORBA event indicating that the HAR was removed.

The server will update
the CommandStatus
object to show the
progress or failure of the
command.

getToken

If successful, the server will push
a HARRemoved event, and also
SHAZAMStatusChanged,
SHAZAMConfigurationChanged,
and HARConfigurationChanged events
if appropriate. The GUI will catch
these events and will remove the GUIHAR
object from the DataModel
and will update the GUISHAZAM object.

CommandStatusHandler

CommandStatus

get

getCommandStatusHandler
createCommandStatus create

GUI

This menu item will
be disabled if the user
does not have rights.

[clicks on the
"Remove HAR" menu item]

actionPerformed

remove

[no rights]
AccessDenied

[device busy]
InvalidOperation

[another op center is controlling
and no override rights]

ResourceControlConflict

Administrator

GUIHAR CHART2HAR

Figure 85. GUIHARModule:RemoveHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-125 11/20/00

3.8.2.23 GUIHARModule:RemoveSHAZAM (Sequence Diagram)

This diagram shows how a SHAZAM is removed from the system. The Administrator right
clicks on a GUISHAZAM object in the Navigator and clicks on the “Remove SHAZAM”
menu item. The GUISHAZAM creates a CommandStatus object to monitor the progress of
the command and calls the remove() method of the SHAZAM object (which it wraps). If
successful, the server will push a CORBA event indicating that the SHAZAM was
removed.

The server will update
the CommandStatus
object to show the
progress or failure of the
command.

getToken

CommandStatusHandler

CommandStatus

get

getCommandStatusHandler

createCommandStatus

create

Administrator GUISHAZAM SHAZAM

This menu item will
be disabled if the user
does not have the
correct rights.

If successful,
this will push a
SHAZAMRemoved event,
which will be caught by
the GUI and the
GUISHAZAM will be removed
from the DataModel as well
as removed from any
associations with a HAR.

GUI

[clicks on the
"Remove" menu item]

actionPerformed

remove

[no rights]
accessDenied

Figure 86. GUIHARModule:RemoveSHAZAM (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-126 11/20/00

3.8.2.24 GUIHARModule:ResetHAR (Sequence Diagram)

This diagram shows how a HAR is reset in maintenance mode. The Administrator right
clicks on a GUIHAR object in the Navigator and clicks on the “Reset” menu item. The
GUIHAR creates a CommandStatus object to monitor the progress of the command and
calls the reset() method of the CHART2HAR object (which it wraps). If successful, the
server will push a CORBA event indicating the changes to the state of the HAR.

GUIHAR CHART2HAR

This menu item will be
disabled if the user does not
have rights or if the device is
not in maintenance mode.

GUI CommandStatusHandler

CommandStatus

The server wil update
the CommandStatus
to show the progress
or failure of the command.

If successful, this will push HARStatusChanged
and SHAZAMStatusChanged or
DMSStatusChanged events.
events. If the HAR was in use, it may also push a
ControllingOpCtrChanged event.

Administrator

[clicks on "Reset" menu item]
actionPerformed

get
getToken

getCommandStatusHandler
createCommandStatus

reset
create

[in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

Figure 87. GUIHARModule:ResetHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-127 11/20/00

3.8.2.25 GUIHARModule:SetHARMessage (Sequence Diagram)

This diagram shows how a HAR message is set. The Operator right clicks on a
GUIHARResponsePlanItem object and clicks on the “Execute” menu item. The
GUIHARResponsePlanItem calls the execute() method of the ResponsePlanItem object
(which it wraps). If successful, the server will push CORBA events indicating the changes
to the state of the HAR. The server will also push events to keep the GUIs updated with the
current status of the command.

This menu item
will be disabled if
the user does not
have rights or if the
HAR is not online.

Operator
GUIHARResponsePlanItem ResponsePlanItem

If successful, this
will cause the server to
push a HARStatusChanged event,
and possibly SHAZAMStatusChanged,
DMSStatusChanged,
ControllingOpCtrChanged, or
ResponsePlanStatusChanged
events.

GUI

The server will update the
ResponsePlanItem, which
is also a CommandStatus.
The server will also cause a
ResponsePlantatusChanged
event to be pushed.

[clicks on "Execute"]
actionPerformed

execute

execute
[no rights]

AccessDenied

getToken

[not online]
CHART2Exception
[HAR in use by a

different op ctr and
no override rights]

ResourceControlConflict
[banned words]

DisapprovedMessageContent

get

Figure 88. GUIHARModule:SetHARMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-128 11/20/00

3.8.2.26 GUIHARModule:SetHARMessageInMaintenanceMode (Sequence Diagram)

This shows how a message is set on a HAR when it is in maintenance mode. The user
clicks on the GUIHAR object in the Navigator and clicks on the “Set Message” menu item.
The GUIHAR object invokes the HARMessageEditor dialog. As the user types a text
message, any banned words are displayed if it’s a text message. When the user clicks “OK”,
the dialog checks the words (if it’s a text message) and displays any suggestions. If no
suggestions are made, the dialog calls the GUIHARModule to create message clips for the
header, trailer, and body of the message. The dialog then creates a HARMessage object and
inserts the clips into it, then calls the GUIHAR to set the message. The GUIHAR object
creates a CommandStatus to monitor the progress of the command, then calls the
CHART2HAR object which it wraps. If successful, the server will push CORBA events to
update the GUIs for any state changes.

The suggested words may
be displayed in a separate dialog
similar to a spell checker, but the
details are left for implementation.

[OK clicked]
actionPerformed

[suggested words]

GUIHARModule

[audio clip]
createAudioDataClip

[text clip]
createTextClip

[* for header,
body, trailer]

Administrator
GUIHAR CHART2HAR GUI CommandStatusHandler

CommandStatus

HARMessageEditor

GUIDictionary

HARMessage

This menu item
will be disabled
if the HAR is not
in maintenance mode
or if the user does not
have rights.

The server will update
the command status
object to update the GUI
with information regarding
the progress or failure
of the command.

If successful,
the server may push
HARStatusChanged,
ControllingOpCtrChanged,
and SHAZAMStatusChanged
or DMSStatusChanged
events.

[clicks on "Set Message"]
actionPerformed

create

show

[types text for messsage]
keyPressed

[text clip]
performApprovedWordsCheck

[non-approved words]
String[]

"Display Suggested Words"

checkForBannedWords
[banned words]

String[]
"Display Banned Words"

[cancel]
actionPerformed

closeWindow

create

setHeader
setBody

setTrailer
setMessage

get
getToken

getCommandStatusHandler

createCommandStatus create
setMessage

[not in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
another op center and no override rights]

ResourceControlConflict
[error]

GUIException
[error]

"Display Error"

closeWindow

[error]

Figure 89. GUIHARModule:SetHARMessageInMaintenanceMode

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-129 11/20/00

3.8.2.27 GUIHARModule:SetupHAR (Sequence Diagram)

This diagram shows how a HAR is set up in maintenance mode. The Administrator right
clicks on a GUIHAR object in the Navigator and clicks on the “Setup” menu item. The
GUIHAR creates a CommandStatus object to monitor the progress of the command and
calls the setup() method of the CHART2HAR object (which it wraps). If successful, the
server will push a CORBA event indicating the changes to the state of the HAR.

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

[in maintenance mode]
CHART2Exception

This menu item will be
disabled if the user does not
have rights or if the device is
not in maintenance mode.

GUI CommandStatusHandler

CommandStatus

The server will update
the CommandStatus
to show the progress
or failure of the command.

If successful, this may push a
HARStatusChanged and
SHAZAMStatusChanged or
DMSStatusChanged events.
events. If the HAR was in use, it
may also push a
ControllingOpCtrChanged event.

Administrator
GUIHAR CHART2HAR

[clicks on "Setup HAR"
menu item]

actionPerformed get

getCommandStatusHandler
createCommandStatus

setup
create

getToken

Figure 90. GUIHARModule:SetupHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-130 11/20/00

3.8.2.28 Startup:Basic (Sequence Diagram)

This diagram shows the processing that occurs at the GUI’s startup. The GUI calls each
InstallableModule’s startup() method. The GUIHARModule connects itself to the ORB so
that it can receive the CORBA events from the Event Service. The GUIHARModule
installs itself into the frameworks of the GUIPlanModule, GUILibraryModule, and
GUITrafficEventModule so that it can support GUIPlanItem objects,
GUIHARStoredMessage objects, and GUIHARResponsePlanItem objects, respectively. It
also creates a HARNavGroup that will contain all of the GUIHAR objects in the Navigator,
as well as a SHAZAMNavGroup to contain all of the GUISHAZAM objects in the
Navigator.

FilterManager

[filters not loaded from system
profile]

getDefaultSystemFilters

These calls will throw
a ClassNotFound exception
if the GUIPlanModule or the
GUITrafficEventModule or the
GUILibraryModule are
not installed. In this case, exception
will be caught and the module will
not provide plan or traffic event or
library functionality.

GUITrafficEventModule GUILibaryModule

get
addResponsePlanItemCreator

get
addLibrarySupporter

GUI
GUIHARModule

HARNavGroup

SHAZAMNavGroup

GUIPlanModule

startup

create

create

get

addPlanItemSupporter

POA

Connect to the ORB to
be able to receive CORBA
events pushed through the
event channel.

activate_object

Figure 91. Startup:Basic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-131 11/20/00

3.8.2.29 GUIHARModule:Shutdown (Sequence Diagram)

This diagram shows what happens when the GUI shuts down. The GUI calls all of the
InstallableModule objects’ shutdown() methods, and the GUIHARModule uses this method
to disconnect itself from the ORB.

GUI

User

GUIHARModule POA

"Exit"

shutdown

shutdown deactivate_object
(GUIHARModule)

delete

Figure 92. GUIHARModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-132 11/20/00

3.8.2.30 GUIHARModule:StoreHARMessageInController (Sequence Diagram)

This diagram shows how a message is stored in a HAR slot in the controller, while the
HAR is in maintenance mode. With the HAR Properties Dialog open, the user clicks on the
“Store message” button. The dialog calls the GUIHARModule to create a
HARMessageClip of the appropriate type (text or voice), depending on the contents of the
message, and the GUIHARModule will call the HARFactory to create the clip. The dialog
then calls the GUIHAR wrapper object to store the slot message. The GUIHAR object
creates a CommandStatus object to monitor the progress of the command, then calls the
CHART2HAR to store the slot message. If successful, the server will push a CORBA event
update the GUIs with the new state of the HAR.

This feature will
be disabled if the
HAR is not in
maintenance mode.

GUIHARModule

createAudioClip or createTextClip

Operator HARPropertiesDialog

CommandStatus

CommandStatusHandlerGUIGUIHAR CHART2HAR

If successful, this will push
push a HARStatusChanged
event

The server will
update the
CommandStatus
object to show the
progress or failure
of the command.

The type of the clip
will be a derived
class which will
depend on which
format of clip is being
stored (text or voice).

[banned words]
DisapprovedMessageContent

[clicks on
"Store Message"]
actionPerformed

get
getToken

getCommandStatusHandler

createCommandStatus create

storeSlotMessage

storeSlotMessage

[error]
"Display Error"

HARMessageClip

[no rights]
AccessDenied

[not in maintenance mode]
CHART2Exception

[HAR under control of
another op ctr and no rights]

ResourceControlConflict

[error]
GUIException

[error]

Figure 93. GUIHARModule:StoreHARMessageInController (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-133 11/20/00

3.8.2.31 GUIHARModule:TakeHAROffline (Sequence Diagram)

This diagram shows how a HAR is taken offline. The Administrator right clicks on a
GUIHAR object in the Navigator and clicks on the “Take Offline” menu item. The
GUIHAR creates a CommandStatus object to monitor the progress of the command and
calls the CHART2HAR object (which it wraps) to take it offline. If successful, the server
will push a CORBA event indicating that the comm mode has been changed.

takeOffline

[offline]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

The server will update
the CommandStatus
object to show the
progress or failure of the
command.

create

If successful,
this will push a
HARStatusChanged event.

Administrator
GUIHAR CHART2HAR

This menu item will be
disabled if the user does not
have rights or if the device is
already offline.

GUI CommandStatusHandler

CommandStatus

[clicks on "Take Offline" menu item]
actionPerformed

get
getToken

getCommandStatusHandler
createCommandStatus

Figure 94. GUIHARModule:TakeHAROffline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-134 11/20/00

3.8.2.32 GUIHARModule:TakeSHAZAMOffline (Sequence Diagram)

This diagram shows how a SHAZAM is taken offline. The Administrator right clicks on a
GUISHAZAM object in the Navigator and clicks on the “Take Offline” menu item. The
GUISHAZAM creates a CommandStatus object to monitor the progress of the command
and calls the SHAZAM object (which it wraps) to take it offline. If successful, the server
will push a CORBA event indicating that the comm mode has been changed.

The server will update
the CommandStatus
object to show the
progress or failure of the
command.

If successful,
this will push a
SHAZAMStatusChanged event.

Administrator
GUISHAZAM SHAZAM

This menu item will be
disabled if the user does not
have rights or if the device is
already offline.

GUI CommandStatusHandler

CommandStatus

[clicks on "Take Offline" menu item]
actionPerformed

get
getToken

getCommandStatusHandler
createCommandStatus

takeOffline
create

[offline]
CHART2Exception

[no rights]
AccessDenied

[SHAZAM controlled by
different op ctr and
no override rights]

ResourceControlConflict

Figure 95. GUIHARModule:TakeSHAZAMOffline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-135 11/20/00

3.8.2.33 GUIHARModule:TurnOffHARTransmitter (Sequence Diagram)

This diagram shows how a HAR’s transmitter is turned off in maintenance mode. The
Administrator right clicks on a GUIHAR object in the Navigator and clicks on the “Turn
Off Transmitter” menu item. The GUIHAR creates a CommandStatus object to monitor the
progress of the command and calls the setTransmitterOff() method of the CHART2HAR
object (which it wraps). If successful, the server will push a CORBA event indicating the
changes to the state of the HAR.

GUIHAR CHART2HAR

This menu item will be
disabled if the user does not
have rights or if the device is
not in maintenance mode.

GUI CommandStatusHandler

CommandStatus

The server will update
the CommandStatus
to show the progress
or failure of the command.

If successful, the server
will push a
HARStatusChanged event.

Administrator

[clicks on "Turn Off
HAR Transmitter" menu item]

actionPerformed get
getToken

getCommandStatusHandler
createCommandStatus

create
setTransmitterOff

[in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

Figure 96. GUIHARModule:TurnOffHARTransmitter (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-136 11/20/00

3.8.2.34 GUIHARModule:TurnOnHARTransmitter (Sequence Diagram)

This diagram shows how a HAR’s transmitter is turned on in maintenance mode. The
Administrator right clicks on a GUIHAR object in the Navigator and clicks on the “Turn
On Transmitter” menu item. The GUIHAR creates a CommandStatus object to monitor the
progress of the command and calls the setTransmitterOn() method of the CHART2HAR
object (which it wraps). If successful, the server will push a CORBA event indicating the
changes to the state of the HAR.

The server wil update
the CommandStatus
to show the progress
or failure of the command.

CommandStatusHandlerGUI

If successful, the server
will push a
HARStatusChanged event.

Administrator

[clicks on "Turn On
HAR Transmitter" menu item]

actionPerformed get
getToken

getCommandStatusHandler
createCommandStatus

setTransmitterOn
create

[in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

[HAR controlled by
different op ctr and
no override rights]

ResourceControlConflict

GUIHAR CHART2HAR

CommandStatus
This menu item will be
disabled if the user does not
have rights or if the device is
not in maintenance mode.

Figure 97. GUIHARModule:TurnOnHARTransmitter (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-137 11/20/00

3.8.2.35 GUIHARModule:ViewHARSlotUsage (Sequence Diagram)

This diagram shows how the HAR slot usage is viewed. The HARPropertiesDialog will call
the GUIHAR object to get the slot usage, which will call the HAR object in the server
(which it wraps). The HAR object will create some HARMessageClip objects, one for each
slot, and the type of the clip object will depend on whether voice or text is being used. The
dialog can then display the contents of the clip for each slot that is in use. If the slot
contains a recorded message, a HARAudioClip will be returned which can be used to play
the message. (See the ListenToHARMessage diagram for details).

GUIHAR
Operator

HARPropertiesDialog HAR

HARMessageClip

GUI

Each clip will actually be a
HARMessageTextClip or
HARMessageAudioClip,
depending on which
format was sent to the
HAR and which type of
data is stored in the database.

See the ListenToHARMessage
sequence diagram for details
about how a user would be
able to listen to the clip.

[invokes dialog]
create

getSlotUsage

[status not cached]
getStatus

[* for each
slot in use]

create

get
getToken

[error]
CHART2Exception

[error]
GUIException

[error]
"Display Error"

HARStatusHARStatus

"Initialize from
Slot Data"

Figure 98. GUIHARModule:ViewHARSlotUsage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-138 11/20/00

3.8.2.36 GUIHARModule:ViewHARStoredMessage (Sequence Diagram)

This diagram shows how a HAR stored message is viewed. This is a subset of the
ModifyHARStoredMessage sequence diagram, so refer to that diagram for details.

See the ModifyHARStoredMessage
sequence diagram for details on how
the user may view a HAR stored message.

Figure 99. GUIHARModule:ViewHARStoredMessage (Sequence Diagram)

[DCE:197]

R1B2 GUI Detailed Design Rev. 0 3-139 11/20/00

3.9 GUIMessageLibraryModule

3.9.1 Class Diagrams

3.9.1.1 GUIMessageLibraryClasses (Class Diagram)

1

MessageLibraryFactory

1 1

CosEvent.PushConsumer

*1

java.awt.event.
KeyListener

LibraryPropertiesDialog

1 1

1
MessageLibrary

1

Menuable

java.awt.event.
ActionListener

NavTreeDisplayable

NavListDisplayable

1

1

1

1 *

GUILibrarySupporter

GUIStoredMessage

GUILibraryModule
*

*

1

1

1

1

LibraryNavGroup

*

1

1

LibraryType

*

1

GUIHARStoredMessage

StoredMessage

MessageContent

DataModel

HARMessageContent

GUIMessageLibrary
11

1

1*

1

*

createLibrary(AccessToken token,string name):MessageLibrary
getLibraryList():MessageLibraryList

setName(AccessToken token, string name):void
createStoredMessage(AccessToken token,
 Message msg,
 string description,
 string category):StoredMessage
getStoredMessages():StoredMessageList
isUsedByAnyPlan():boolean
isMessageUsedByAnyPlan(Identifier msgID):boolean
removeMessage(AccessToken, StoredMessage):void
remove(AccessToken):void

LibraryNameDialog()
show()

getMessageTypeName():string
getMessageTypeClass():Class
setName()

m_columnnames
m_name
m_class

getMessageData():StoredMessageData
getMessage():Message
setMessage(AccessToken, Message):void
setMessageData(AccessToken token,
 string description,
 string category,
 Message msg):void
 remove(AccessToken):voidGUIMessageLibrary(token,name)

createLibraryTypes()
addMessage(GUIStoredMessage)
removeMessage()
setName(string):void
remove():void
createStoredMessage()
messageAdded()
messageRemoved()

push

createGUIStoredMessage(StoredMessage, Message) : GUIStoredMessage
getStoredMessageCreationMenuReps(accessToken) : MenuItemRep[]
createNewGUIStoredMessage(accessToken, menuString, guiLibrary) : boolean
createLibraryType():LibraryType

remove()
editMessage()

get()
addLibrarySupporter(GUILibrarySupporter)
getLibrarySupporters()
createLibrary()

Figure 100. GUIMessageLibraryClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-140 11/20/00

3.9.1.1.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.9.1.1.2 GUIHARStoredMessage (Class)

This class provides a GUI “wrapper” object that is used to wrap a StoredMessage CORBA
interface that contains HAR-specific data and to supply GUI-specific functionality.

3.9.1.1.3 GUILibrarySupporter (Class)

This class allows the GUILibraryModule to maintain stored messages that have differing
formats. When an object of this type is installed the user can create, maintain, and use the
specific type of libraries and stored messages that the object supports.

3.9.1.1.4 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.9.1.1.5 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.9.1.1.6 GUIMessageLibrary (Class)

This class is a GUI “wrapper” object that is used to wrap a MessageLibrary object. The
wrapping is done to cache the data locally for faster access, as well as to give the
MessageLibrary some GUI-specific functionality such as menus and command handling.

3.9.1.1.7 GUILibraryModule (Class)

The GUILibraryModule is an installable module in the GUI, and provides all functionality
specific to stored message libraries and messages. Only one GUILibraryModule object may
exist within the GUI. This class provides the functionality needed to support stored
messages and stored message libraries.

R1B2 GUI Detailed Design Rev. 0 3-141 11/20/00

3.9.1.1.8 GUIStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object. It
provides a user interface object which can implement whatever interfaces are necessary for
the object to exist within the GUI framework (for example, an object must support the
NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.9.1.1.9 LibraryPropertiesDialog (Class)

This dialog is used to view and edit the stored message library’s name and other properties.

3.9.1.1.10 MessageLibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.9.1.1.11 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.9.1.1.12 HARMessageContent (Class)

This class represents a HAR message. It consists of header, body and footer of the message
that can either be in audio format or plain text.

3.9.1.1.13 java.awt.event. KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.9.1.1.14 LibraryNavGroup (Class)

This class has one instance in the GUILibraryModule. It serves as a container for all of the
GUILibrary objects in the module when they are displayed in the Navigator.

3.9.1.1.15 LibraryType (Class)

This object stores information pertaining to each type of stored message library that is
supported within the system. It is needed to display different types of messages that have
different attributes.

R1B2 GUI Detailed Design Rev. 0 3-142 11/20/00

3.9.1.1.16 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.9.1.1.17 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.9.1.1.18 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.9.1.1.19 MessageContent (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.9.1.1.20 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

R1B2 GUI Detailed Design Rev. 0 3-143 11/20/00

3.9.2 Sequence Diagrams

3.9.2.1 GUILibraryModule:CreateLibrary (Sequence Diagram)

This diagram shows how a stored message library is created. First, the user right clicks on
the Message Library in the navigator and selects Add Library on the menu. This calls the
GUILibraryModule that checks the functional rights of the user and will, if the user has the
correct rights, display the Properties dialog. The user enters information about the new
library and presses enter. The GUILibraryModule is called to create a library. For each
different type of stored message supported in the system, the GUILibraryModule creates a
LibraryType object that allows the system to properly display message types with different
attributes.

GUILibraryModule GUILibrarySupporter

createLibrary

GUI

getToken

"Display Dialog"

LibraryNavGroup
Operator

LibraryPropertiesDialog

show

[User enters library name]
actionPerformed

createLibrary

"Check Functional
Rights"

[No Rights]
accessDenied

[error]
AccessDenied

"[Add Library menu
 item selected"]
actionPerformed

create

[success]
"Close Window"

[error]
Chart2Exception

[error]
"Display Error"

createLibrary

MessageLibraryFactory

Figure 101. GUILibraryModule:CreateLibrary (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-144 11/20/00

3.9.2.2 GUILibraryModule:CreateStoredMessage (Sequence Diagram)

This diagram shows how a stored message is created. First, the user right clicks on the
GUIMessageLibrary object, which calls the GUILibraryModule to get the installed library
supporters. Each library supporter returns menu items for message types that it can create.
When the user clicks on the appropriate message type, the GUIMessageLibrary object is
called again, and this time it asks each library supporter to create the correct type of
message based on the menu item. When the correct creator is found it opens its message
editor. The operator enters the stored message data. When the data is saved, the information
is stored in the database and the server will push a StoredMessageAdded event. The
GUILibrary moduleGUILibraryModule then calls the GUIStoredMessage

GUILibrarySupporterNavTree GUI GUILibraryModule

Operator

GUIMessageLibrary

Message

MessageLibrary

These operations would
be invoked via a
message editor for the specific
type of message being edited

This would be the specific
type of message editor
supported by the
GUILibrarySupporter

The type of message would actually
be a derived class, based on the type
of message being created.

If successful,
the server will push
a StoredMessageAdded
event. The GUILibraryModule
will catch the event and ask
all of the GUIStoredMessageCreator
objects to attempt to create the
correct type of GUIStoredMessage,
then the GUIStoredMessage will
be added to the DataModel.

[other error]
CHART2Exception

for each
GUILibrarySupporter

[correct menu item]
true

createStoredMessage

[correct menu item]
"Display Message

Editor Dialog"

get
getToken

create

createStoredMessage

[right click]
mousePressed [right click]

makeMenu getSSMenuItemReps get
getGUILibrarySupporterss

[* for each GUILibrarySupporter]
getStoredMessageCreationMenuReps

"Display Menu"

[user clicks on menu item]
actionPerformed get

getMessageCreators

createNewGUIStoredMessage

MenuItemRep[]MenuItemRep[]
JMenu

[unknown menu item]
false

[error]
"Display Error"

[no rights]
AccessDenied

[bad message content]
DisapprovedMessageContent

Figure 102. GUILibraryModule:CreateStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-145 11/20/00

3.9.2.3 GUILibraryModule:DeleteLibrary (Sequence Diagram)

This diagram shows how a stored message library is removed from the system. First, the
user right clicks on the Message Library in the navigator and selects Delete Library on the
menu. This calls the MessageLibrary object, which removes the library and any stored
messages, contained in the library.

[Delete Library selected]
actionPerformed

remove

[error]
showMessageDialog

If successful the
server will push a
library removed event.

[no rights]
AccessDenied

GUI
Operator

GUIMessageLibrary

[other error]
Chart2Exception

[error]
"Show error message"

MessageLibrary

getToken

remove(Access Token)

Figure 103. GUILibraryModule:DeleteLibrary (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-146 11/20/00

3.9.2.4 GUILibraryModule:DeleteStoredMessage (Sequence Diagram)

This diagram shows how a stored message is deleted. First, the user right clicks on the
GUIMessageLibrary object, which calls the GUIStoredMessage to remove itself from the
system. Once the object is removed from the system the HandleEventLibraryRemoved
diagram shows how the navigator is updated for all users.

If successful,a
StoredMessageRemoved
event is pushed.

showMessageDialog

GUI

Operator
GUIStoredMessage

[Delete Stored Message
item selected]

actionPerformed

remove

getToken

removeMessage(GUIStoredMessage)

[no rights]
AccessDenied

[other error]
Chart2Exception

[error]
"display error message"

MessageLibrary

removeMessage(token,message)

GUIMessageLibrary

Figure 104. GUILibraryModule:DeleteStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-147 11/20/00

3.9.2.5 GUILibraryModule:Discovery (Sequence Diagram)

This diagram shows how the Library Module event channels and the library and stored
message objects are discovered and added to the system. This will be a periodic process,
and the GUI will call the GUILibraryModulereeatedly. When the GUI asks the module to
discover event channels, it looks up the library event channels in the trader. It then creates a
PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the
consumer to the channel and reattches it if the event service is restarted. (Duplicate
channels will be ignored). The GUI then calls the module to dicover objects. At this time
the module will query the Library objects in the trader. If any are found it will create an
Identifier to be used as a lookup key for use with the DataModel. For each library found
and added to the DataModel the module finds all stored messages. To create a
GUIStoredMessage wrapper object, the module attemts to create the stored message using
each installed GUILibrarySupporter. When the correct supporter is used the wrapper object
is created and added to the DataModel and the GUIMessageLibrary objects.

MessageLibraryFactory

for each
factory

getLibraryList

objectAdded

GUILibrarySupporter

LibraryType

objectUpdated

GUIMessageLibrary

MessageLibary StoredMessageCosTrading.Lookup EventConsumerGroup

PushEventConsumer

DataModel

GUIStoredMessage

GUI Discovery Thread
GUILibraryModule

[not found]
create

[not found]
createGUIStoredMessage

getStoredMessages

getID
getObject

getObject

discoverEventChannels

for each
 library

for each
stored

 message

query
(Library Event Channels)

[for each channel found]
add

[for each event channel]
create

discoverObjects
(Message Library
Factory objects)

[MessageLibrary]
getID

[not found]
objectAdded

libraryAdded

For each storedMessage defined in th system,
attempt to create the GUIStoredMessage with each
GUILibrarySupporter. When the correct supporter
is found, a GUIStoredMessage object is returned.

for each
GUILibrarySupporter create

LibraryNavGroup

create

addMessage

[not found]
objectAdded

Figure 105. GUILibraryModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-148 11/20/00

3.9.2.6 GUILibraryModule:HandleEventLibraryAdded (Sequence Diagram)

This diagram shows how the GUI receives information when a library is added to the
system from the CORBA Event service and displays it to the user once the DataModel is
updated.

for each supporter

When the library is created, it
must contain a place holder for each
type of message available in the system.
Each message type has a unique column
structure.

CORBA
Event

Service
GUILibraryModule GUI

Identifier

DataModel

GUIMessageLibrary

push(LibraryAdded)

get

getDataModel

getObject

create

[GUIMessageLibrary
 found in DataModel]

Create

LibraryType

objectAdded

create

objectAdded

getLibrarySupporters

createLibraryTypes

Figure 106. GUILibraryModule:HandleEventLibraryAdded (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-149 11/20/00

3.9.2.7 GUILibraryModule:HandleEventLibraryNameChange (Sequence Diagram)

This diagram shows how the GUI receives information when a library name is changed
from the CORBA Event service and displays it to the user once the DataModel is updated.

[GUIMessageLibrary
not found in DataModel]

GUIMessageLibrary

objectUpdated

push(Library Name Change)

get

getDataModel

getObject

create

CORBA
Event

Service
GUILibraryModule GUI

Identifier

DataModel

objectUpdated

LibraryType

setName

for each
LibraryType setName

Figure 107. GUILibraryModule:HandleEventLibraryNameChange

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-150 11/20/00

3.9.2.8 GUILibraryModule:HandleEventLibraryRemoved (Sequence Diagram)

This diagram shows how the GUI receives information when a library is removed from the
system from the CORBA Event service and displays it to the user once the DataModel is
updated.

objectRemoved(GUIMessageLibrary)

LibraryNavGroup

cleanup

[* for each LibraryType]
objectRemoved(LibraryType)

[for each GUIStoredMessage]
objectRemoved(GUIStoredMessage)

removeLibrary

objectUpdated

Corba Event Service
GUILibraryModule GUI DataModel GUIMessageLibrary

After all observers remove their
reference to this object, it will be
deleted by Java garbage collection.

push(library removed)

getDataModel
getObject

[library not found]
Log error

GUIStoredMessageLibraryType

Figure 108. GUILibraryModule:HandleEventLibraryRemoved (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-151 11/20/00

3.9.2.9 GUILibraryModule:HandleEventStoredMessageAdded (Sequence Diagram)

This diagram shows how the GUI receives information when a stored mesage is added to
the system from the CORBA Event service and displays it to the user once the DataModel
is updated.

objectAdde(GUIMessageLibrary)

for each
GUILibrarySupporter

get

getDataModel

getObject

create

[GUIMessageLibrary
not found in DataModel]

getMessage

createGUIStoredMessage
[unknown type of Message]

null
[correct type of

Message]
create

messageAdded

objectAdded(GUIStoredMessage)

GUIStoredMessage

CORBA
Event

Service
GUILibraryModule GUI

Identifier

GUILibrarySupporterStoredMessage DataModel GUIMessageLibrary

GUIStoredMessage

This will actually
be a derived class
with a type specific
to the type of
message.

push(StoredMessageAdded)

Figure 109. GUILibraryModule:HandleEventStoredMessageAdded

 (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-152 11/20/00

3.9.2.10 GUILibraryModule:HandleEventStoredMessageRemoved (Sequence Diagram)

This diagram shows how the GUI receives information from the CORBA Event service
when a stored message is removed from the system, and displays it to the user once the
DataModel is updated.

objectUpdated

messageRemovedfor each
Mesage removed

objectUpdated

getObject

[message not found]
Log error

objectRemoved(GUIStoredMessage)

Corba Event Service
GUILibraryModule GUI DataModel GUIStoredMessage

After all observers remove their
reference to this object, it will be
deleted by Java garbage collection.

GUIMessageLibrary LibraryType

messageRemoved

push(message id)

getDataModel

Figure 110. GUILibraryModule:HandleEventStoredMessageRemoved

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-153 11/20/00

3.9.2.11 GUILibraryModule:Login (Sequence Diagram)

This diagram shows what happens when the user logs on.

User

GUI

The module currently
does not perform
any work at login.

GUILibraryModule

"Login"
or

"Change User" loggedIn

Figure 111. GUILibraryModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-154 11/20/00

3.9.2.12 GUILibraryModule:Logout (Sequence Diagram)

This diagram shows what happens when the user logs out of the system.

The module currently
does not perform
any work at logout.

"Logout"
or

"Change User" loggedOut

GUILibraryModule

User

GUI

Figure 112. GUILibraryModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-155 11/20/00

3.9.2.13 GUILibraryModule:SetLibraryName (Sequence Diagram)

This diagram shows the steps taken to change the name of an existing library. The user
right clicks on a library and selects the Set Name option. A dialog is displayed and the user
is allowed to enter a new name. On pressing enter the name is changed.

setName

[error]
"Show error message"

closeWindow

getSSMenuItemReps

MenuItemRep[]
JMenu

[right click]
mouse pressed

[right click]
makeMenu

Create

MessageLibrary

[User enters new library name]
actionPerformed

GUILibraryPropertiesDialog

LibraryNavGroup

"Display Dialog"

"Display Menu"

[user clicks on menu item]
actionPerformed

show

Operator

GUIMessageLibrary

[AccessDenied or
 Chart2Exception]

"Show Error Message"

getToken

[User Closes Dialog]

setName(token, name)

GUI

getName

Figure 113. GUILibraryModule:SetLibraryName (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-156 11/20/00

3.9.2.14 GUILibraryModule:Shutdown (Sequence Diagram)

This diagram shows what happens when the GUI shuts down. The GUI cals all of the
InstallableModule objects’ shutdown() methods, and the GUILibraryModule disconnects
from the ORB.

User

ORB

GUI

delete

disconnect

Exit

shutdown shutdown

GUILibraryModule

Figure 114. GUILibraryModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-157 11/20/00

3.9.2.15 GUILibraryModule:Startup (Sequence Diagram)

This diagram shows the steps taken to initialize the GUILibraryModule. On startup the
module creates the LibraryNavGroup for display of he libraries in the navigator and
connects to the ORB.

create LibraryNavGroup

DataModel

objectAdded

startup
connect

getDataModel

GUI
ORBGUILibraryModule

The module will stay for
the life of the application and
will be cleaned up at shutdown.

Figure 115. GUILibraryModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-158 11/20/00

3.10 GUIPlanModule

3.10.1 Class Diagrams

3.10.1.1 GUIPlanClasses (Class Diagram)

This diagram shows the classes used by the GUIPlan module and their relationships.

Response
DataCreator

1

*

1 Plan

1

1

InstallableModule

NavListDisplayable

NavTreeDisplayable

*

GUIPlanModule
GUIPlanItem

*

GUIPlanNavGroup

CosEvent.
PushConsumer

1*

PlanItemCreationSupporter

GUIPlan

UniquelyIdentifiable Menuable

java.awt.event.
ActionListener

1

0..1

1

11

PlanItem
11

DataModel

*

1

createResponsePlanItemData() :
 ResponsePlanItemData
getResponseTargetID() : Identifier

addGUIPlan
removeGUIPlan

get()
addPlanItemSupporter()
getPlanItemSupporters()

GUIPlanItem(PlanItem, GUIPlan)
-setName(name)
getName()
getGUIPlan()
getIPlanItem()
-remove()
-modify()

m_name

getPlanItemCreationMenuReps(accessToken) : MenuItemRep[]
createGUIPlanItem(planItem, itemID, plan) : GUIPlanItem
createNewGUIPlanItem(accessToken, menuString, plan) : boolean

setName(item)
getName()
removeGUIPlanItem(guiPlanItem)
addItemtoCache(planItem, planItemID)
removeItemFromCache(planItemID)
doProperties()
setProperties()
-remove()
-activate()
getItemsFromPlan()

Figure 116. GUIPlanClasses (Class Diagram)

3.10.1.1.1 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.10.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.10.1.1.3 GUIPlan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data
locally for faster access, as well as to give the Plan some GUI-specific functionality such as
menus and command handling.

R1B2 GUI Detailed Design Rev. 0 3-159 11/20/00

3.10.1.1.4 GUIPlanItem (Class)

This is a GUI base class for all the plan items. Each GIUPlanItem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

3.10.1.1.5 GUIPlanModule (Class)

This is an installable GUI module that handles the Plan functionality in the GUI. Other
modules that support plan items must attach their PlanItemCreationSupporters to the
GUIPlanModule at startup. The plan module will call the supporters when it is necessary to
create a specific type of GUIPlanItem.

3.10.1.1.6 GUIPlanNavGroup (Class)

This class serves as a container for all of the GUIPlan objects in the GUIPlanModule, when
they are displayed in the navigator. It provides functionality for displaying menus. The
GUIPlanModule has one instance of this class.

3.10.1.1.7 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.10.1.1.8 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.10.1.1.9 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.10.1.1.10 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

R1B2 GUI Detailed Design Rev. 0 3-160 11/20/00

3.10.1.1.11 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.10.1.1.12 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic
event. Each action is defined to be a Plan item. The Plan supports functionality to add and
remove plan items.

3.10.1.1.13 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.10.1.1.14 PlanItemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module.
The modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule
will then call the supporter when it is time to display the Plan menu or to create a specific
type of plan item or GUIPlanItem.

3.10.1.1.15 Response DataCreator (Class)

This interface enables the creation of type-specific ResponsePlanItemData objects, which
are used for creating the appropriate type of ResponsePlanItem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

3.10.1.1.16 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-161 11/20/00

3.10.2 Sequence Diagrams

3.10.2.1 GUIPlanModule:AddPlan (Sequence Diagram)

This diagram shows how a new plan is added to the system. The user clicks on the Add
Plan menu item in the GUIPlanNavGroup’s context menu. (This menu item will only be
displayed if the user has rights.) The GUIPlanNavGroup will create an uninitialized
GUIPlan object with default properties and will call its doProperties method. This is a
temporary object, used only for displaying the properties. The temporary GUIPlan will
create a modeless PlanPropertiesDialog and display it. When the user clicks OK, the dialog
will ask the GIUPlan to create a Plan from the properties entered from the dialog. A
CommandStatus object is created to keep the user informed about the progress of the
command. The GUIPlan queries the trader for all of the Plan Factories. It then tries to create
the plan by calling each plan factory in the trader passing it the access token, until a factory
successfully creates the Plan object. If the Plan was created, the PlanAdded event will be
pushed from the plan server through the plan event channel to update all of the GUIs. See
the GUIPlanModule:PlanAddedEvent diagram for more details.

create

findAllObjectsOfType

[error]
completed

create

doProperties

[plan created]
completed

[operator clicks
on create plan

menu item]
actionPerformed

create

setVisible

[*for each PlanFactory found, until plan is created]
createPlan

[no factories found]
completed

getToken

[error]
AccessDenied or CHART2Exception

[user clicks OK]
actionPerformed

[no factories found]

CommandStatus
Handler

This queries the
trader for all the
Plan factories

GUIPlan

Operator
GUIPlanNavGroup

PlanProperties

PlanFactory
CorbaUtilities

If successful, the server
pushes a PlanAdded event.
See PlanAddedEvent
sequence diagram for
details.

setProperties
getCommandStatusHandler

createCommandStatus

The completion status
will be shown in the command
status window. In case of a failure,
an error message is also displayed
in the command status.

CommandStatus

The Plan that was
added here is discovered
through the CORBA event
generated by the server.
This is the reason for
deleting the GUIPlan here.
Refer to PlanAddedEvent
sequence for details.

GUI

This menu item will
be disabled if the user
does not have rights.

Figure 117. GUIPlanModule:AddPlan (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-162 11/20/00

3.10.2.2 GUIPlanModule:CreatePlanItem (Sequence Diagram)

This diagram shows how a plan item is created. When the user invokes the menu on the
GUIPlan object, the GUIPlan object asks the GUIPlanModule for all of the attached
PlanItemCreationSupporters. It then asks each of the supporters for the strings to use for the
plan item creation menu items. Each string is associated with the supporter that supplied it,
and the associations are stored in the GUIPlan object for use when a menu item is clicked
on. When the user clicks on one of these menu items, the GUIPlan’s actionPerformed
method will be called, and the GUIPlan will find the matching string stored in the
association, and will call the corresponding PlanItemCreationSupporter to create the new
plan item. See the modules that support plan item creation for more details on how plan
items are created.

This will cause the
PlanItemCreationSupporter
to display a plan item properties
dialog for the specific type of
plan item. If the user successfully
enters all pertinent data,
the supporter will call the
specific plan item factory in the
server to create the plan item,
which will then push a plan item
created event to all of the attached
event consumers. See
the sequence diagram
GUIPlanModule:PlanItemAddedEvent
and the Plan module for more details.

Each plan item
supporter will
have to check the
access token
before returning
the string for the
menu item, and
if the user does
not have permission,
return null.

GUIPlanModule

Operator

PlanItemCreation
SupporterGUIPlan

This menu item will
be disabled if the user
does not have rights.

[creation supporter found
for action string]

createNewGUIPlanItem

[* for each menu string]
"storeSupporterMenuStringAssociation"

[user right clicks
on plan]

getSSMenuItemReps
getPlanItemSupporters

[user clicks on
create plan item]
actionPerformed

[* for each supporter]
getPlanItemCreationMenuReps

Figure 118. GUIPlanModule:CreatePlanItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-163 11/20/00

3.10.2.3 GUIPlanModule:Discovery (Sequence Diagram)

This diagram shows what happens during the discovery process, in which the module has a
chance to find out about event channels and objects. The GUI will periodically call the
module, first to discover event channels and then to discover objects. During the event
channel discovery phase, the module looks for Plan event channels in the trader. If it finds
any, it creates a PushEventConsumer and attaches itself to the Event Consumer Group. This
will attach the module to the event channel and will reattach it automatically if the event
service is restarted. If the module was previously attached to the event channel, it will be
ignored. During the object discovery phase, the GUI calls the module to discover objects.
The module will query the Plan objects in the trader. If the Plan does not already exist in
the DataModel, a new GUIPlan wrapper object will be created and added to the DataModel.
When the GUIPlan object is created, it asks the Plan for all of its PlanItems. For each item
that is not already in the DataModel, it will call all of the attached
PlanItemCreationSupporters and ask each one to attempt to create the specific type of
GUIPlanItem wrapper object for the generic PlanItem object. Each
PlanItemCreationSupporter will check whether the generic PlanItem object is of its own
specific class of plan item. If so, the PlanItemCreationSupporter must create an object of its
own specific class of GUIPlanItem object to wrap the PlanItem. If a wrapper object was
created, it will be added to the DataModel. After a short delay, the changes made through
the DataModel will update any windows that are attached to the DataModel.

R1B2 GUI Detailed Design Rev. 0 3-164 11/20/00

findAllObjectsOfType

create

[* for next
discovered plan]

repeat
create

getObject
[plan not found]

create

[GUIPlan created]
objectAdded(GUIPlan)

getItems

[* for each event channel]
add

findObjects (Plan event channels)

discoverObjects

getID

[GUIPlanItem created]
objectAdded

[* for next
PlanItem]

repeat

[* for each event channel]
create

discoverEventChannels

[not already in list]
[* for each plan item supporter]

createGUIPlanItem(plan,planItem)

getDataModel

The plan item
created will be
of the specific
class implementing
GUIPlanItem.

PlanItem

PlanItem
Creation

Supporter

GUIPlanItem

This will work only
if the PlanCreationSupporters
added themselves to the
GUIPlanModule in their startup
methods.

GUI GUIPlanModule CORBAUtilities

PushEvent
Consumer

Event
Consumer

Group

GUIPlan

DataModelPlan

Identifier

"update state"

[planItemData
type matches
supporter's

type]
create

getID

Figure 119. GUIPlanModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-165 11/20/00

3.10.2.4 GUIPlanModule:PlanAddedEvent (Sequence Diagram)

This diagram shows how the event is handled when a Plan is added. The GUIPlanModule
makes sure that the GUIPlan does not already exist in the DataModel, and assuming it does
not, it creates the GUIPlan wrapper object for the Plan. The GUIPlan object is then added to
the DataModel and the GUIPlanNavGroup, and the DataModel will update all attached
observers to show the change.

GUI GUIPlanNavGroupDataModel
CORBA
Event

Service

GUIPlanModule

GUIPlan

Plan

getDataModel

addGUIPlan

objectAdded(GUIPlan)

getObject

objectUpdated(GUIPlanNavGroup)

[plan found]

push (Plan)

create

getName

Figure 120. GUIPlanModule:PlanAddedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-166 11/20/00

3.10.2.5 GUIPlanModule:PlanItemAddedEvent (Sequence Diagram)

This diagram shows the handling of the event after a new PlanItem has been created. First,
the GUIPlan to which the new PlanItem belongs is retrieved from the DataModel. Then the
module will ask each PlanItemCreationSupporter to attempt to create a specific
GUIPlanItem wrapper object if the generic PlanItem is a correct type for the supporter. If a
GUIPlanItem object was created by one of the creation supporters, it is added to the
GUIPlan and to the DataModel. The GUIPlan is also updated through the DataModel to
make sure that any windows will be updated.

[plan not found]

push
(plan id, planItemId, plan item)

[PlanItemData matches the
supporters' specific class]

create

getObject(planItemID)
[GUIPlanItem
already exists]

Corba
Event

Service

PlanItem
CreationSupporter

GUIPlanModule
GUIPlan

GUIPlanItem

DataModel GUI

objectAdded(planItemId)

objectUpdated(planId)

addItemToCache

getPlanItemSupporters
[* for each plan item supporter
until a GUIPlanItem is returned]

createGUIPlanItem

getDataModel

[no plan item created]

getObject(planId)

The plan item
supporter will
create its own
specific type of
GUIPlanItem.

Figure 121. GUIPlanModule:PlanItemAddedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-167 11/20/00

3.10.2.6 GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)

This diagram shows how a PlanItemRemoved event is handled, after a plan item is deleted.
The GUIPlanModule received the PlanItem identifier and looks up the GUIPlanItem object
in the DataModel. If found, the module gets the GUIPlan and asks it to remove the
GUIPlanItem from its collection. The GUIPlan object is then updated through the
DataModel, and the GUIPlanItem is removed from the DataModel. Any attached observers
(e.g., windows) will be updated after a short delay. The GUIPlanItem will then be removed
from memory by Java when the observers remove their references to it.

CORBA
Event

Service
GUIPlanModule GUI DataModel GUIPlanItem GUIPlan

After a short delay,
the DataModel
will call all attached
observers. After
all observers remove
their references to
the GUIPlanItem, the
object will be deleted
from memory by
Java garbage collection.

push(planID, planItemId)
getDataModel

getObject(planID)

removeItemFromCache

[GUIPlan
not found]

objectUpdated(GUIPlan)

objectRemoved(GUIPlanItem)

Figure 122. GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-168 11/20/00

3.10.2.7 GUIPlanModule:PlanRemovedEvent (Sequence Diagram)

This diagram shows how a PlanRemoved event is handled. First, an attempt is made to get
the GUIPlan object from the DataModel. If it exists, the GUIPlan is removed from the
GUIPlanNavGroup. The GUIPlanNavGroup update notification is invoked through the
DataModel, and the GUIPlan is removed from the DataModel. The DataModel will cause
any attached observers to display the change.

GUIPlanNavGroup GUIPlan

After a short
delay, the DataModel
will notify all observers.
After the observers
remove their references
to the GUIPlan, it will
be deleted at some time
by the Java garbage
collection.

CORBA
Event

Service
GUIPlanModule DataModelGUI

removeGUIPlan

objectUpdated(GUIPlanNavGroup)

push(plan id)

getDataModel

getObject

objectRemoved(GUIPlan)

Figure 123. GUIPlanModule:PlanRemovedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-169 11/20/00

3.10.2.8 GUIPlanModule:RemovePlan (Sequence Diagram)

This diagram shows how a plan is removed from the system. The operator clicks on the
Delete Plan menu item. A CommandStatus object is created to keep the user informed
about the progress of the command. The GUIPlan then gets the access token and calls the
Plan to remove itself. If successful, it will cause the server to push a PlanRemoved event to
be pushed through the event channel. See the diagram GUIPlanModule:PlanRemovedEvent
for details on how the GUIs are updated after the plan is removed.

create

showYesNoDialog
[user cancelled operation]

completed

[clicks on
delete plan
menu item]

actionPerformed

remove
[error]

AccessDenied or CHART2Exception

getToken

getCommandStatusHandler

createCommandStatus

Operator

This menu item will be
disabled if the user does
not have rights.

If successful, the server
removes all the plan items
within the plan and the
plan itself. The server
then pushes a PlanRemoved
event. Refer to the
GUIPlanModule:PlanRemovedEvent
for more details.

GUIPlan Plan GUI

The GUIPlan object is
actually deleted in
the data model, when
the Plan server sends
out a PlanRemoved event.
This process is shown
in the PlanRemovedEvent
sequence diagram.

The completion status
will be shown in the command
status window. In case of a failure,
an error message is also displayed
in the command status.

CommandStatus
Handler

CommandStatus Gets User
confirmation

[error]
completed

[success]
completed

Figure 124. GUIPlanModule:RemovePlan (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-170 11/20/00

3.10.2.9 GUIPlanModule:RemovePlanItem (Sequence Diagram)

This diagram shows how a plan item is removed from a plan and deleted. The operator
selects the plan item and invokes the item’s context menu, then clicks on Delete Item. The
GUIPlanItem calls the GUIPlan that it is contained in to remove the item. The GUIPlan
then calls the Plan to remove the item. The served Plan object will then remove the item
and push a PlanItemRemoved event through the event channel. See the diagram
GUIPlanModule:PlanItemRemovedEvent for more details on this event.

Operator
GUI

delete

error
success

[other error]
CHART2Exception

getCommandStatusHandler

The remove command completion
status will be shown in the command
status window. In case of a failure,
an error message is also displayed
in the command status.

CommandStatus
Handler

CommandStatus

Plan

If successful,
a PlanItemRemoved
event will be pushed
by the server.
See the diagram
GUIPlanModule:
PlanItemRemovedEvent
for more details on GUI
handling of this event.

This menu item
will be disabled if
the user does not
have rights.

PlanItemGUIPlanGUIPlanItem

remove

getToken

[no rights]
AccessDenied

[user clicks on
Remove

menu item]
actionPerformed getGUIPlan

removeItem

createCommandStatus

create

removeItem

Figure 125. GUIPlanModule:RemovePlanItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-171 11/20/00

3.10.2.10 GUIPlanModule:Shutdown (Sequence Diagram)

When the GUI calls the module’s shutdown method, the module deactivates from the POA
to clean up.

GUI
GUIPlanModule ORB Log

log

shutdown

disconnect

Figure 126. GUIPlanModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-172 11/20/00

3.10.2.11 GUIPlanModule:Startup (Sequence Diagram)

The startup for the GUIPlanModule begins when the GUI calls the startup method. At this
time the module activates itself with the POA so that it can be called as a PushConsumer. It
also creates a Navigator group to hold the GUIPlan objects and adds the group to the
DataModel. NOTE: Any modules deemed necessary to support plan item creation should
attach themselves to the GUIPlanModule in their startup methods.

POA

In the modules which
implement PlanItemCreationSupporter,
they should call the Plan Module's
addPlanItemSupporter from within
their startup methods.

GUI
GUIPlanModule DataModel

GUIPlanNavGroup

activate_object

getDataModel

startup

create

objectAdded

Figure 127. GUIPlanModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-173 11/20/00

3.11 GUIResourcesModule

3.11.1 Class Diagrams

3.11.1.1 GUIResourcesModuleClasses (Class Diagram)

This diagram represents the classes used by the GUI Resources module and their
relationships.

Resource
PushReceiver

OperationsCenterGUIOperationsCenter

DataModel

Resource
Transfer

Command

java.lang.
Runnable

11

11

1

1

InstallableModule

GUIResourcesModule

CosEvent.
PushConsumer

1..*

1

GUI
*1

Figure 128. GUIResourcesModuleClasses (Class Diagram)

3.11.1.1.1 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.11.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

R1B2 GUI Detailed Design Rev. 0 3-174 11/20/00

3.11.1.1.3 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.11.1.1.4 GUIResourcesModule (Class)

This class is an installable GUI module that handles all of the resource-specific
functionality in the GUI.

3.11.1.1.5 java.lang. Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.11.1.1.6 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.11.1.1.7 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.11.1.1.8 GUIOperationsCenter (Class)

This class is a GUI “wrapper” object that is used to wrap a OperationsCenter object. The
wrapping is done to cache the data locally for faster access, and to provide GUI-specific
functionalities to the wrapped object.

R1B2 GUI Detailed Design Rev. 0 3-175 11/20/00

3.11.1.1.9 Resource PushReceiver (Class)

This class receives CORBA events from the Resource event channel and deals with each
type of event as appropriate.

3.11.1.1.10 Resource Transfer Command (Class)

This command object is invoked on the main AWT event thread after an
UnhandledControlledResources CORBA event is received. This enables the
TransferResources dialog to be invoked from the event thread.

R1B2 GUI Detailed Design Rev. 0 3-176 11/20/00

3.11.2 Sequence Diagrams

3.11.2.1 GUIResourcesModule:Discovery (Sequence Diagram)

This diagram shows how the Resources event channels and Operations Center objects are
discovered and added to the system. This will be a periodic process, and the GUI will call
the GUIResourcesModule repeatedly. When the GUI asks the module to discover event
channels, it looks up the Resource event channels in the trader. It then creates a
PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the
consumer to the channel and reattaches it if the event service is restarted. (Duplicate
channels will be ignored). The GUI then calls the module to discover objects.

getID

getObject

DataModel OperationsCenter

getDataModel

GUIOperations
Center

[not found]
create

getEligible
Response

Participants
[GUIOperationsCenter created]

objectAdded

CosTrading.Lookup EventConsumerGroup

PushEventConsumer

GUI
GUIResourceModule

[for each channel found]
add

[for each event channel]
create

discoverObjects
query

(OperationsCenter objects)

discoverEventChannels
query

(Resource Event Channels)

Figure 129. GUIResourcesModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-177 11/20/00

3.11.2.2 GUIResourcesModule:EventHandling (Sequence Diagram)

The EventHandling diagram shows how the GUI receives update information from the
CORBA Event service and displays it to the user once the DataModel is updated.

TokenManipulator javax.swing.

SwingUtilties

Resource
Transfer

Command

This will be invoked on the
main AWT event thread.

Resource
PushReceiver

GUIOperations
Center

push
(ResponseParticipantAdded

or ResponseParticipantRemoved) get

[ResponseParticipantAdded event]
responseParticipantAdded

getDataModel

getObject
[not found]

objectUpdated

get
getToken

checkAccess (TransferAnySharedResource)
[has rights]

create

invokeLater

run

[ResponseParticipantRemoved event]
responseParticipantRemoved

ORB

get

GUI DataModel

transferControlledResources

push
(UnhandledResourcesEvent)

Figure 130. GUIResourcesModule:EventHandling (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-178 11/20/00

3.11.2.3 GUIResourcesModule:Login (Sequence Diagram)

This diagram shows what happens in the GUIResourcesModule when the user logs in to the
system.

GUIResourcesModule
GUI

This module currently performs
no work on login.

loggedIn

Figure 131. GUIResourcesModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-179 11/20/00

3.11.2.4 GUIResourcesModule:Logout (Sequence Diagram)

This diagram shows what happens when the user logs out. The GUI calls all of the
InstallableModule objects’ loggedOut() methods, but the GUIResourcesModule currently
does nothing during logout.

GUIResourcesModule

loggedOut

GUI

The module performs no
work at logout.

Figure 132. GUIResourcesModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-180 11/20/00

3.11.2.5 GUIResourcesModule:Shutdown (Sequence Diagram)

This diagram shows what happens when the GUI shuts down. The GUI calls all of the
InstallableModule objects’ shutdown() methods, and the GUIResourcesModule uses this
method to disconnect itself from the ORB.

GUI
POAGUIResourcesModule

deactivate_object
(ResourcePushReceiver)

shutdown

Figure 133. GUIResourcesModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-181 11/20/00

3.11.2.6 GUIResourcesModule:Startup (Sequence Diagram)

This diagram shows the steps taken to initialize the GUIResourcesModule. At startup time,
the GUI calls the startup method in each of the installable modules. When the
GUIResourcesModule startup is called, the ORB connections are made in order to receive
the Resource events from the server.

Resource
PushReceiver

create

POA

activate_object
(ResourcePushReceiver)

get
getPOA

GUI
GUIResourcesModule

startup

Figure 134. GUIResourcesModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-182 11/20/00

3.12 GUITrafficEventModule

3.12.1 Class Diagrams

3.12.1.1 GUITrafficEventModuleClasses (Class Diagram)

This diagram shows the overall architecture of the GUITrafficEventModule. The utility
classes and dialogs are shown on other diagrams. The GUIResponseParticipation class
hierarchy is in the GUITrafficEventModuleUtilityClasses diagram due to a lack of space on
this diagram.

LaneConfiguration

GUIDMS

GUIDMSStoredMsgItem

GUIHAR

TrafficEvent
PushReceiver

CommLog
PushReceiver

1

1

1

1

GUIModelObserver

1

1 1

*

1

GUIHARModule

*

NavTreeFilter
LogEntry

*1

1
GUIHARStoredMsgItem

GUIResponsePlanItem

GUITrafficEventHolder

CosEvent.
PushConsumer

GUIResponsePlanItemCreator

GUICongestionEvent

GUITrafficEventModule

InstallableModule

ResponseDataCreator

DataModel

NavListDisplayable

NavTreeDisplayable

Menuable

*

1

*1

0..1

1

*

1 11

GUIHARResponse
PlanItem

Droppable

TrafficEvent

GUITrafficEvent

GUIRoadwayEvent

GUIIncident

GUIDisabledVehicleEventGUIWeatherServiceEvent

GUISafetyMessageEvent

GUISpecialEvent

GUIPlannedRoadwayClosure

GUIActionEvent

11

GUIResponse
Participation

1

1

EventNavFilter

TrafficEventAssociation

*1

EventNavGroup

CommLog * 1 1

GUIDMSModule

GUICommLog

CommLogClient

getLanes():Lane[]

Lane[] m_lanes

getParticipationData() : ResponseParticipationData
setNotified(boolean) : void
overrideNotificationTime(Date) : void
remove() : void
dataChanged(ResponseParticipationData) : void
getEvent() : GUITrafficEventHolder
cleanup() : void

m_eventHolder

m_id1
m_id2

createEvent(eventType, LogEntry[])

doProperties() : void
getResponseTargetID() : Identifier
execute() : void
cleanup() : void
getItemData() : ResponsePlanItemData
setItemData(ResponsePlanItemData) : void
remove

doProperties()
setTrafficEvent(TrafficEvent, BasicEventData)
addLogEntry(String)
addLogEntries(LogEntry[])
getValidParticipantTypes() : int[]
addResponseParticipation(ResponseParticipant)
getResponseParticipations() : GUIResponseParticipation[]
associateEvent(GUITrafficEvent secondaryEvent)
associateEvent(TrafficEvent primaryEvent)
changeType(int) : TrafficEvent
addResponsePlanItem(ResponsePlanItemData)
addResponsePlanItem(ResponseDataCreator)
open()
close()
isClosed() : boolean
overrideClosureTime(Date)
getClosureTime() : Date
executeResponse()
getAssociatedEvents() : GUITrafficEvent[]
addPlanToResponse(GUIPlan) : void
setLaneConfiguration(LaneConfiguration) : void
getHistory(LogFilter) : LogEntry[]

eventRemoved()
logEntriesAdded(LogEntry[])
eventClosed(BasicEventData)
eventStateChanged(BasicEventData)
laneConfigurationChanged(LaneConfiguration)
typeChanged(TrafficEvent, BasicEventData)
reponsePlanItemAdded(GUIResponsePlanItem)
responsePlanItemModified(planItemName, ID,
 ResponsePlanItemData)
responsePlanItemsRemoved(Identifier[])
responsePlanItemStatusChanged(itemID, stateDesc,
 isActive, hasBeenExecuted)
participationAdded(GUIResponseParticipation)
participationRemoved(GUIResponseParticipation)

createGUIResponsePlanItem(Identifier, name,
 ResponsePlanItemData) : GUIResponsePlanItem
createGUIResponsePlanItem(ResponsePlanItem) :
 GUIResponsePlanItem

get() : GUITrafficEventModule
addResponsePlanItemCreator(creator)
getEventFactories() : TrafficEventFactory[]
getStandardLaneConfigurations() : LaneConfiguration[]
findAssociation(eventID1, eventID2) :
 TrafficEventAssociation
responsePlanItemAdded(ResponsePlanItemData,
 TrafficEventID) : void

createResponsePlanItemData() :
 ResponsePlanItemData
getResponseTargetID() : Identifier

getTabPanes() : TabPaneInfo[]
createEventData() : BasicEventData
getEventData() : BasicEventData
getValidParticipantTypes() : int[]
cleanup() : void
open(TrafficEventFactory, BasicEventData) : void

get() : GUICommLog
addEntry(LogEntry) : void
getEntries() : LogEntry[]
entryAdded(LogEntry) : void
addCommLog(CommLog) : void

setStillOpenQualifier()

Figure 135. GUITrafficEventModuleClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-183 11/20/00

3.12.1.1.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART II system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.12.1.1.2 CommLog PushReceiver (Class)

This class will receive and handle any CORBA events that are pushed by a server via the
CORBA event service. This class will listen specifically for CORBA events sent through
the Comm Log event channel.

3.12.1.1.3 CommLogClient (Class)

This class is a wrapper to be used by clients of the Communications Log. It provides
services such as discovering instances of the CommLog in the trader and caching entries to
the comm log that are added when the comm log is not available.

3.12.1.1.4 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.12.1.1.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.12.1.1.6 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.12.1.1.7 GUIResponse Participation (Class)

This class represents one instance of a participant (person, mobile unit, device, resource, or
response team) being notified and involved in the response to an event. This is a wrapper

R1B2 GUI Detailed Design Rev. 0 3-184 11/20/00

object which wraps a ResponseParticipation CORBA interface object, caches the CORBA
object’s data, and/or adds GUI-specific functionality.

3.12.1.1.8 EventNavFilter (Class)

This Navigator filter allows the user to filter the Traffic Events shown in the Navigator
based on Traffic Event-specific criteria. For example, it allows them to view events that
were opened and/or closed at specified times. (Note: events that have been removed from
the system are not available to be filtered and will not be displayed in the navigator
regardless of the dates given in the filter).

3.12.1.1.9 EventNavGroup (Class)

This class is a singleton Navigator filter that shows all of the GUITrafficEventHolder
objects in the system, and provides functionality so that the user can right click on the
Navigator group to create a new traffic event in the system.

3.12.1.1.10 GUICongestionEvent (Class)

This is a wrapper class that wraps the CongestionEvent CORBA interface. It will cache the
CongestionEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a CongestionEvent.

3.12.1.1.11 GUIDisabledVehicleEvent (Class)

This is a wrapper class that wraps the DisabledVehicleEvent CORBA interface. It will
cache the DisabledVehicleEvent data and supply any type-specific GUI functionality
related to the TrafficEvent being a DisabledVehicleEvent.

3.12.1.1.12 GUIHARResponse PlanItem (Class)

This class provides a GUI “wrapper” object that is used to wrap a ResponsePlanItem
CORBA interface that contains HAR-specific data and to supply GUI-specific
functionality.

3.12.1.1.13 GUIIncident (Class)

This is a wrapper class that wraps the Incident CORBA interface. It will cache the Incident
data and supply any type-specific GUI functionality related to the TrafficEvent being an
Incident.

3.12.1.1.14 GUIResponsePlanItem (Class)

This is a base class for the GUI wrapper object that is used to wrap a ResponsePlanItem.
The ResponsePlanItem represents a proposed action to perform on a target object in
response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the
response plan item.

R1B2 GUI Detailed Design Rev. 0 3-185 11/20/00

3.12.1.1.15 GUIResponsePlanItemCreator (Class)

This interface is used to enable the creation of specific types of GUIResponsePlanItem
wrapper objects depending upon which type of ResponsePlanItem is being wrapped. Any
class wishing to create GUIResponsePlanItems must implement this interface and add
themselves to the GUITrafficEventModule at GUI startup time. When the
GUITrafficEventModule discovers a ResponsePlanItem or catches a CORBA event
indicating that a new response plan item has been created, it will call each known
GUIResponsePlanItemCreator to give it an opportunity to create a specific type of GUI
wrapper object.

3.12.1.1.16 GUIRoadwayEvent (Class)

This class extends the GUITrafficEvent class, adding any functionality that may be specific
to the event being located on a roadway.

3.12.1.1.17 GUITrafficEventHolder (Class)

 This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.12.1.1.18 GUITrafficEventModule (Class)

This class is an installable module within the GUI’s module framework. It provides the
framework for all of the CHART Traffic Event and Comm Log functionality to be launched
from the GUI. There can be at most one instance of a GUITrafficEventModule object
within the GUI.

3.12.1.1.19 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.12.1.1.20 ResponseDataCreator (Class)

This interface enables the creation of type-specific ResponsePlanItemData objects, which
are used for creating the appropriate type of ResponsePlanItem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

R1B2 GUI Detailed Design Rev. 0 3-186 11/20/00

3.12.1.1.21 GUIActionEvent (Class)

This is a wrapper class that wraps the ActionEvent CORBA interface. It will cache the
ActionEvent data and supply any type-specific GUI functionality related to the TrafficEvent
being an ActionEvent.

3.12.1.1.22 GUIPlannedRoadwayClosure (Class)

This is a wrapper class that wraps the PlannedRoadwayClosure CORBA interface. It will
cache the PlannedRoadwayClosure data and supply any type-specific GUI functionality
related to the TrafficEvent being a PlannedRoadwayClosure.

3.12.1.1.23 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.12.1.1.24 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.12.1.1.25 GUITrafficEvent (Class)

This class is a base class for the wrappers that wrap the TrafficEvent CORBA interface.
The implementing object will exist from when the TrafficEvent is created until the GUI is
shut down, the TrafficEvent type is changed, or the TrafficEvent is removed from the
system. The class may cache the TrafficEvent data, and italso provides GUI functionality
for the specific type of TrafficEvent.

3.12.1.1.26 GUISafetyMessageEvent (Class)

This is a wrapper class that wraps the SafetyMessageEvent CORBA interface. It will cache
the SafetyMessageEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SafetyMessageEvent.

R1B2 GUI Detailed Design Rev. 0 3-187 11/20/00

3.12.1.1.27 GUIWeatherServiceEvent (Class)

This is a wrapper class that wraps the WeatherServiceEvent CORBA interface. It will cache
the WeatherServiceEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a WeatherServiceEvent.

3.12.1.1.28 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

3.12.1.1.29 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.12.1.1.30 GUISpecialEvent (Class)

This is a wrapper class that wraps the SpecialEvent CORBA interface. It will cache the
SpecialEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SpecialEvent.

3.12.1.1.31 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.12.1.1.32 NavTreeFilter (Class)

This class serves as a node in the Navigator tree and filters objects to be displayed in the
Navigator. It is an observer to the DataModel so that it can create the
NavTreeFilteredObjectInstance objects for any NavTreeDisplayables that it contains.
(Multiple instances can appear to represent one NavTreeDisplayable object). Filters can be
cascaded to achieve a cumulative filtering effect; that is, a filter appearing under a parent
filter will call the parent filter first to filter the objects, and then it will apply its own
filtering method. The cascading of filters is therefore an “AND” operation. A filter can
either be a system filter or a user-specific filter. System filters can only be modified by
someone with the correct administrative rights, and they can only be added as a child of
other system filters.

3.12.1.1.33 GUICommLog (Class)

This class is a wrapper for the CommLog CORBA interface object, and provides the GUI
functionality for interacting with the Comm Log. No more than one instance of a
GUICommLog object will exist within the GUI.

R1B2 GUI Detailed Design Rev. 0 3-188 11/20/00

3.12.1.1.34 GUIDMSStoredMsgItem (Class)

This class is a GUI “wrapper” object that is used to wrap a PlanItem object which contains
the DMSPlanItemData. It helps in the creation of a DMS plan item data using the
DMSStoredMsgItemProperties object.

3.12.1.1.35 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.12.1.1.36 TrafficEventAssociation (Class)

This object is used to denote an association between two TrafficEvent objects. It stores only
the IDs of the TrafficEvent objects because traffic event objects can be removed from the
system, in which case the reference to the removed object would cause problems. The
association object is separate to reduce complexity of maintaining bidirectional references
between the events.

3.12.1.1.37 GUIDMS (Class)

This class is a GUI “wrapper” object that is used to wrap a CHART2DMS object. This is an
abstract class that needs to be extended by the GUI DMS model specific classes.

3.12.1.1.38 GUIDMSModule (Class)

The GUIDMSModule is an installable module in the GUI that handles all of the DMS
specific functionality. Only one GUIDMSModule object may exist within the GUI. This
class implements the interfaces to support the frameworks of the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule. It handles the creation of model
specific GUI DMS objects using the model supporters.

3.12.1.1.39 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.12.1.1.40 TrafficEvent PushReceiver (Class)

This class will receive and handle any CORBA events that are pushed by a server via the
CORBA event service. This class will listen specifically for CORBA events sent through
the Traffic Event event channel.

3.12.1.1.41 GUIHAR (Class)

This class provides a GUI “wrapper” object that is used to wrap the CHART2HAR
CORBA interface and to supply GUI-specific functionality.

R1B2 GUI Detailed Design Rev. 0 3-189 11/20/00

3.12.1.1.42 GUIHARModule (Class)

The GUIHARModule is an installable module in the GUI, and provides all functionality
specific to HAR and SHAZAM control. It requires that the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule all be installed. Only one
GUIHARModule object may exist within the GUI. This class implements the interfaces to
support the frameworks of the GUIPlanModule, the GUILibraryModule, and the
GUITrafficEventModule.

3.12.1.1.43 GUIHARStoredMsgItem (Class)

This class provides a GUI “wrapper” object that is used to wrap the HARStoredMsgItem
CORBA interface and to supply GUI-specific functionality.

R1B2 GUI Detailed Design Rev. 0 3-190 11/20/00

3.12.1.2 GUITrafficEventModuleUtilityClasses (Class Diagram)

This diagram shows the utility classes used in the GUITrafficEventModule, as well as the
GUIResponseParticipation hierarchy, which would not fit on the GUITrafficEventClasses
diagram.

CommLogSearcher

GUIResponse
Participation

GUIResource
Deployment

GUIOrganization
Participation

Response
Participation

Resource
Deployment

Organization
Participation

11

11

11

1

1

1

LogSearchListener

EventTypeChangeHint

UpdateHint

EventLogSearcher
SearchError

CommandLogEntriesFound
Command

java.lang.Thread

java.lang.Runnable

1

CommLogSearcher(LogFilter,
 SearchListener) : void

setArrivedOnScene(boolean) : void
setDepartedFromScene(boolean) : void
overrideArrivalTime(Date) : void
overrideDepartureTime(Date) : void

setRespondedToEvent(boolean) : void
overrideRespondedTime(Date) : void

EventLogSearcher(GUITrafficEventHolder,
 LogFilter, SearchListener) : void

getErrorMessage() : StringgetLogEntries() : LogEntry[]

getParticipationData() : ResponseParticipationData
setNotified(boolean) : void
overrideNotificationTime(Date) : void
remove() : void
dataChanged(ResponseParticipationData) : void
getEvent() : GUITrafficEventHolder
cleanup() : void

m_eventHolder

searchEntriesReturned(LogEntry[])
errorReturned(String)

m_eventID
m_newTrafficEvent
m_newEventData

Figure 136. GUITrafficEventModuleUtilityClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-191 11/20/00

3.12.1.2.1 CommLogSearcher (Class)

This class provides functionality for starting an asynchronous search of the communications
log.

3.12.1.2.2 EventLogSearcher (Class)

This class provides functionality for starting an asynchronous search of the traffic event’s
log.

3.12.1.2.3 EventTypeChangeHint (Class)

This hint object contains the information necessary to substitute a new TrafficEvent for an
old TrafficEvent when the type of the traffic event changes.

3.12.1.2.4 GUIOrganization Participation (Class)

This GUI wrapper object wraps an OrganizationParticipation CORBA object and adds
GUI-specific functionality. It represents an organization participating in the response to a
traffic event.

3.12.1.2.5 GUIResource Deployment (Class)

This GUI wrapper object wraps a ResourceDeployment CORBA object and adds GUI-
specific functionality. It represents an instance of a resource that has been deployed to
respond to a traffic event.

3.12.1.2.6 GUIResponse Participation (Class)

This class represents one instance of a participant (person, mobile unit, device, resource, or
response team) being notified and involved in the response to an event. This is a wrapper
object which wraps a ResponseParticipation CORBA interface object, caches the CORBA
object’s data, and/or adds GUI-specific functionality.

3.12.1.2.7 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.12.1.2.8 java.lang.Thread (Class)

This class represents a java thread of execution.

R1B2 GUI Detailed Design Rev. 0 3-192 11/20/00

3.12.1.2.9 LogSearchListener (Class)

This interface will allow the implementing class to receive log entries from an
asynchronous log search as the search progresses. It also is used to report error messages if
the search fails.

3.12.1.2.10 LogEntriesFound Command (Class)

This runnable is used to communicate that log entries have been found during an
asynchronous search.

3.12.1.2.11 Organization Participation (Class)

This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

3.12.1.2.12 Resource Deployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.12.1.2.13 Response Participation (Class)

This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.12.1.2.14 SearchError Command (Class)

This Runnable is used to indicate that an error occurred while processing an asynchronous
search.

3.12.1.2.15 UpdateHint (Class)

This interface must be implemented by all objects that are to be used as update hints. An
update hint is a concept that is negotiated between a (subject) object and observers that are
interested in that object. The data model makes no assumptions about how the hints will be
used. The data model will invoke the isEqual method of the update hint to ask it to
determine if it is equivalent to another hint. This allows the model to perform update
optimizations by not sending notification to observers of two updates with equivalent hints
in the same period. An example of how an update hint would be used follows: A DMS
object has state variables that track the current message being displayed and the current
latitude and longitude location of the sign controller. Because the system map requires
significant processing load to redraw and needs only be notified if the latitude or longitude
of the DMS changes the DMS and map view use a DMSMapChange hint. When the DMS
object has a state change to the latitude or longitude property to report, that change is
reported by calling objectUpdated and passing a DMSMapChange hint. When it has other
changes which are not state changes to the latitude or longitude properties, it reports those

R1B2 GUI Detailed Design Rev. 0 3-193 11/20/00

changes to the DataModel by calling objectUpdated passing a DMSNonMapChange update
hint. The map view will only redraw the DMS if the ObjectUpdate contains a
DMSMapChange hint.

R1B2 GUI Detailed Design Rev. 0 3-194 11/20/00

3.12.1.3 EventDialogs (Class Diagram)

This diagram shows the dialogs and GUI components that will be used to display the traffic
event data, and it also shows which components are used for each type of traffic event.

CommLog
SearchDialog

CommLogDialog

11

11

TrafficEvent
SearchDialog

LogSearchListener

java.awt.event.
ItemListener

TabPaneInfo

GUIWeatherServiceEvent

GUIWeatherSensorEvent

GUISpecialEvent

GUIDisabledVehicleEvent

GUIPlannedRoadwayClosure

GUIActionEvent

GUICongestionEvent

GUISafetyMessageEvent

Droppable

GUITrafficEvent

BasicEventPanel

LogPanel

0..1

1

RoadConditionsPanel

ParticipationPanel

GUITrafficEventHolder

DefaultJFrame

javax.swing.
JTabbedPane

EventTabbedPane

GUIModelObserver

*1

1

1

11
IncidentVehiclePanel

DisabledVehiclePanel

ActionEventPanel

java.awt.
Component

GUIRoadwayEvent

GUIIncident

EventDialog

IncidentPanel

LaneConfigurationPanel

EventNavFilter
PropertiesDialog

1

1

1

1

1 1
1

1

1
11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

m_component
m_tabName

m_eventID

update(BasicEventData)

update(IncidentVehicleData)

update(DisabledVehicleData)

update(ActionEventData)

EventDialog(GUITrafficEventHolder,
GUITrafficEvent)
-changeEventType(oldEvent, newEvent)

m_eventHolder
m_trafficEvent

update(IncidentData)

update(LaneConfiguration)

update(RoadConditionsData)

Figure 137. EventDialogs (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-195 11/20/00

3.12.1.3.1 ActionEventPanel (Class)

This JPanel will contain controls for specifying data specific to ActionEvents.

3.12.1.3.2 BasicEventPanel (Class)

This JPanel will contain the controls for entering data that is common to all traffic events.

3.12.1.3.3 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.12.1.3.4 DisabledVehiclePanel (Class)

This JPanel will contain controls for specifying data specific to DisabledVehicleEvents.

3.12.1.3.5 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.12.1.3.6 TabPaneInfo (Class)

This simple structure contains the information necessary to add a page to a JTabbedPane.

3.12.1.3.7 CommLog SearchDialog (Class)

This dialog allows the user to search the entries in the communications log for entries that
fit the user defined search criteria.

3.12.1.3.8 CommLogDialog (Class)

This dialog is the GUI interface that allows the user to view, add, and search the entries in
the communications log.

3.12.1.3.9 EventTabbedPane (Class)

This JTabbedPane will contain the panels specific to the type of traffic event.

3.12.1.3.10 javax.swing. JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a
certain page.

R1B2 GUI Detailed Design Rev. 0 3-196 11/20/00

3.12.1.3.11 EventDialog (Class)

This is the main dialog for managing a traffic event. It will contain a tabbed pane that will
allow the user to change information about the event or activate a response plan for the
traffic event. The type of panels displayed in the tabbed pane depends on the type of event.
If the type of the event is changed, the tabbed pane will be updated to display the correct
panels for the new type of event.

3.12.1.3.12 GUIActionEvent (Class)

This is a wrapper class that wraps the ActionEvent CORBA interface. It will cache the
ActionEvent data and supply any type-specific GUI functionality related to the TrafficEvent
being an ActionEvent.

3.12.1.3.13 GUICongestionEvent (Class)

This is a wrapper class that wraps the CongestionEvent CORBA interface. It will cache the
CongestionEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a CongestionEvent.

3.12.1.3.14 GUISafetyMessageEvent (Class)

This is a wrapper class that wraps the SafetyMessageEvent CORBA interface. It will cache
the SafetyMessageEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SafetyMessageEvent.

3.12.1.3.15 GUITrafficEvent (Class)

This class is a base class for the wrappers that wrap the TrafficEvent CORBA interface.
The implementing object will exist from when the TrafficEvent is created until the GUI is
shut down, the TrafficEvent type is changed, or the TrafficEvent is removed from the
system. The class may cache the TrafficEvent data, and italso provides GUI functionality
for the specific type of TrafficEvent.

3.12.1.3.16 GUIDisabledVehicleEvent (Class)

This is a wrapper class that wraps the DisabledVehicleEvent CORBA interface. It will
cache the DisabledVehicleEvent data and supply any type-specific GUI functionality
related to the TrafficEvent being a DisabledVehicleEvent.

3.12.1.3.17 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

R1B2 GUI Detailed Design Rev. 0 3-197 11/20/00

3.12.1.3.18 GUIPlannedRoadwayClosure (Class)

This is a wrapper class that wraps the PlannedRoadwayClosure CORBA interface. It will
cache the PlannedRoadwayClosure data and supply any type-specific GUI functionality
related to the TrafficEvent being a PlannedRoadwayClosure.

3.12.1.3.19 GUISpecialEvent (Class)

This is a wrapper class that wraps the SpecialEvent CORBA interface. It will cache the
SpecialEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SpecialEvent.

3.12.1.3.20 GUITrafficEventHolder (Class)

 This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.12.1.3.21 IncidentVehiclePanel (Class)

This JPanel will contain controls for specifying the quantity and type of vehicles involved
in an Incident.

3.12.1.3.22 LogPanel (Class)

This JPanel will contain the log component for the traffic event.

3.12.1.3.23 GUIWeatherSensorEvent (Class)

This is a wrapper class that wraps the WeatherSensorEvent CORBA interface. It will cache
the WeatherSensorEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a WeatherSensorEvent.

3.12.1.3.24 GUIWeatherServiceEvent (Class)

This is a wrapper class that wraps the WeatherServiceEvent CORBA interface. It will cache
the WeatherServiceEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a WeatherServiceEvent.

3.12.1.3.25 ParticipationPanel (Class)

This JPanel will contain controls for specifying the state of the participations for any

R1B2 GUI Detailed Design Rev. 0 3-198 11/20/00

resources, mobile units, special needs teams, or external organizations that may be
participating in the response to the traffic event.

3.12.1.3.26 EventNavFilter PropertiesDialog (Class)

This dialog allows the user to modify the properties of an EventNavFilter navigator filter.

3.12.1.3.27 GUIIncident (Class)

This is a wrapper class that wraps the Incident CORBA interface. It will cache the Incident
data and supply any type-specific GUI functionality related to the TrafficEvent being an
Incident.

3.12.1.3.28 IncidentPanel (Class)

This JPanel will contain controls for editing the data specific to Incident events.

3.12.1.3.29 GUIRoadwayEvent (Class)

This class extends the GUITrafficEvent class, adding any functionality that may be specific
to the event being located on a roadway.

3.12.1.3.30 java.awt. Component (Class)

This class is the base class for all graphical user interface components such as buttons and
panels.

3.12.1.3.31 java.awt.event. ItemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list
item or combo box item.

3.12.1.3.32 LaneConfigurationPanel (Class)

This JPanel will contain controls for specifying the lane configuration and also the blockage
state of each lane within that configuration.

3.12.1.3.33 LogSearchListener (Class)

This interface will allow the implementing class to receive log entries from an
asynchronous log search as the search progresses. It also is used to report error messages if
the search fails.

3.12.1.3.34 RoadConditionsPanel (Class)

This JPanel will contain controls for specifying the conditions of the road surface related to
a traffic event.

R1B2 GUI Detailed Design Rev. 0 3-199 11/20/00

3.12.1.3.35 TrafficEvent SearchDialog (Class)

This dialog allows the user to search the entries in the traffic event’s log for entries that fit
the user defined search criteria.

R1B2 GUI Detailed Design Rev. 0 3-200 11/20/00

3.12.2 Sequence Diagrams
3.12.2.1 GUITrafficEventModule:AddCommLogEntry (Sequence Diagram)

This diagram shows how a user adds an entry to the Communications Log. The user
invokes the Comm Log dialog from the GUI toolbar or by a hot key. The dialog attaches
itself to the DataModel to be updated when any new entries are added, and queries the
current entries from the GUICommLog wrapper. When the user enters a line in the Comm
Log and hits the Enter key, the dialog calls the GUICommLog, which calls the CommLog
CORBA interface to add the entry. An event will be pushed by the server through the
Comm Log event channel and the GUI will be updated; otherwise, the error will be
displayed in the dialog.

get
getDataModel

attachObserver

User
GUICommLog

CommLogDialog

GUI CommLogClient DataModel

This menu item will
be disabled if the user
does not have rights.

If successful, the new
log entry will be pushed back
through the Comm Log event
channel and then will be added
to the GUICommLog. See
the diagram
HandleEventCommLogEntryAdded
for details.

[invokes dialog from
toolbar]

actionPerformed

create

getToken

addEntry

addEntry
[no rights]

AccessDenied
[other error]

CHART2Exception
[error]

GUIException
[error]

"Display Error"

getEntries

[view rights only]
"Disable All

Editing Features"

show

[user presses the Enter key]
keyPressed

get

[error]

[closes dialog]

closeWindow

get
getDataModel

detachObserver

Figure 138. GUITrafficEventModule:AddCommLogEntry (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-201 11/20/00

3.12.2.2 GUITrafficEventModule:AddDeviceToResponse (Sequence Diagram)

This diagram shows how a device is added to a response plan. Any GUI wrapper of a
response device must implement the ResponseDataCreator interface, which will be called to
create a ResponsePlanItem for the device. See the sequence diagram:
AddResponsePlanItem for details.

See the sequence diagram "AddResponsePlanItem" for details.
(All response devices will implement the ResponseDataCreator interface,
which will allow them to be added to the response plan.)

Figure 139. GUITrafficEventModule:AddDeviceToResponse (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-202 11/20/00

3.12.2.3 GUITrafficEventModule:AddEvent (Sequence Diagram)

This diagram shows how a traffic event is added to the system from the GUI. The operator
chooses “New Incident” (or another type of event) from the EventNavGroup’s context
menu, or clicks on one of the buttons to create an event from the Comm Log dialog. (If the
event is created from the Comm Log, the event will be initialized with any selected log
entries). The EventNavGroup creates a GUITrafficEventHolder and a GUITrafficEvent
object and calls doProperties() on the GUITrafficEventHolder to display the EventDialog.
The dialog initializes the tab panes by calling the GUITrafficEvent, which passes back the
correct tab panes corresponding to the specific type of the traffic event. It also gets the
available traffic event factories, which will allow the user to choose which factory to use.
The dialog is then displayed. As the user types in the dialog, the dialog will validate the
input and enable the “Open Event” button when the required data has been entered for
opening the traffic event (i.e., adding it to the System). When the user clicks on “Open
Event”, the dialog calls the GUITrafficEvent to create the a specific type of BasicEventData
object (depending on the type of GUITrafficEvent) and retrieves all of the data from the
event-type-specific panels by passing the BasicEventData to the panels to have them fill in.
The dialog will then call the GUITrafficEvent to open the event. It will try to call the
selected TrafficEventFactory, or if none was selected, it will try to call each of the
TrafficEventFactory objects until a TrafficEvent is successfully created. A TrafficEvent is
returned synchronously from the factory and is set into the GUITrafficEvent wrapper. The
GUITrafficEventHolder and GUITrafficEvent wrappers are then added to the DataModel so
that the GUI can tell that the wrapper objects already exist when the corresponding CORBA
event is pushed by the server and received by the GUI. (This allows the EventDialog to
remain open because the GUI can retain the reference to the GUITrafficEventHolder object
for future use and can therefore ignore the CORBA event; otherwise, a new
GUITrafficEventHolder object would be created for the same traffic event when the
CORBA event is handled.) For all other GUIs, the CORBA event will not be ignored and a
new GUITrafficEventHolder will be created. See the sequence diagram:
HandleEventEventAdded for more details on the handling of the CORBA event.

R1B2 GUI Detailed Design Rev. 0 3-203 11/20/00

[no factory selected]
getEventFactories

open(Selected
Factory,

BasicEventData)

GUI

This will cause the
rest of the GUI to become
aware of the traffic event.

BasicEventData

This will actually be a
derived object, depending
on what type of event
it is.

EventDialog

javax.swing.
JPanel

The panels created
would be all of the
panels necessary to
display the data
pertaining to the
specific type of event.

The panels will
be set up as
keyListeners (or
whatever type of
input listener is
appropriate) if
input validation is
required

GUITraffic
EventModuleOperator

Traffic
EventFactory

GUITrafficEventHolder

EventNavGroup

An event may
also be created
from the Comm Log.
Log Entries may be
passed if
createEvent() is
called from the
Comm Log.

DataModel

If successful, this will
cause a TrafficEventAdded
event to be pushed by the server.
However, it will be ignored in this
GUI because we're going to add
the GUITrafficEventHolder and
GUITrafficEvent to the DataModel
soon.

The actual type of the
GUITrafficEvent
object will depend on the
type code passed in.

The menu item
will be disabled
if the user does
not have rights.

GUITrafficEvent

create
(eventType)

doProperties

create

createEvent(eventType,
logEntries)

create

[clicks on
"New Incident", etc.]

actionPerformed

[Data valid
for opening]

"Enable Open
Event Button"

[clicks on "Open Event"]
actionPerformed

[* for each required panel]
"Get Data"

get
getEventFactories

createEvent

getEventType

get
getToken

[no rights]
AccessDenied

[other error]
CHART2Exception

[error]
GUIException

[error]
"Display Error"

[error] TrafficEvent

setTrafficEvent

[no factory selected]
[CORBA comm failure]

[* for next factory]

objectAdded(GUITrafficEventHolder)

objectAdded(GUITrafficEvent)

create
(GUITrafficEvent)

getTabPanes [* for each
applicable

panel]
createTabPaneInfo[]

"Add the
components"

show

["cancel" clicked]
actionPerformed

closeWindow

[user types key
KeyPressed

validateInput
[* for each panel containing

required data]
"Get Data"

[* for each factory]
getName

createData

"Get Selected Factory"

Figure 140. GUITrafficEventModule:AddEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-204 11/20/00

3.12.2.4 GUITrafficEventModule:AddPlanItemToResponse (Sequence Diagram)

This diagram shows how a plan item is added to a response plan. The GUIPlanItem objects
will implement the ResponseDataCreator interface, which will be called to create a
ResponsePlanItem for the plan item. See the sequence diagram: AddResponsePlanItem for
details.

See the sequence diagram: "AddResponsePlanItem" for details.
(Each GUIPlanItem will implement the ResponseDataCreator interface,
which will allow them to be added to the response plan.)

Figure 141. GUITrafficEventModule:AddPlanItemToResponse

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-205 11/20/00

3.12.2.5 GUITrafficEventModule:AddPlanToResponse (Sequence Diagram)

This diagram shows how a Plan is added to a Response Plan for an event. The user drags
and drops the GUIPlan object onto the GUITrafficEventHolder object. The
GUITrafficEventHolder then gets the items from the GUIPlan and for each one, calls it to
create its specific type of ResponsePlanItemData for its specific type of plan item. Then the
GUITrafficEventHolder calls the TrafficEvent to add the response plan item. If successful,
the server will push a CORBA event through the TrafficEvent channel. See the sequence
diagram: HandleEventResponsePlanItemAdded for details of the handling of this event. If
an error occurs, a CommandStatus object will be created so that the failure will appear in
the Command Failures window.

Command
Status

createCommandStatus create

completed(success or failure reason)

[no rights or event closed]
"Reject Drag"

Command
Status

Handler

addPlanToResponse

Operator

GUITrafficEventHolder GUIPlanItem

ResponsePlanItemData

The specific type of
ResponsePlanItemData
that will be created
depends on which type
of plan item
is called to create it.

GUI TrafficEvent

If successful, the
server will push a
ResponsePlanItemAdded
event. See the diagram:
HandleEventResponsePlanItemAdded
for details.

[drags object over event]
allowDrop

[drops GUIPlan on event]
handleDrop

get

GUIPlan

get
getCommandStatusHandler

getToken

addResponseItem

"Accept Drag"

[not GUIPlan]
"Return drag permission for

other types of objects"

[no rights]
AccessDenied

[event under control of
another op center and

no override rights]
ResourceControlConflict

[event closed or other error]
CHART2Exception

[error]
GUIException

getItems

[* for each
GUIPlanItem]

createResponsePlanItemData create

addResponsePlanItem

The user may also be able to drag plans
to other objects such as the EventDialog
or the traffic event object in the navigator,
but they will all delegate this functionality
to the GUITrafficEventHolder object.

Figure 142. GUITrafficEventModule:AddPlanToResponse (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-206 11/20/00

3.12.2.6 GUITrafficEventModule:AddResponseParticipation (Sequence Diagram)

This diagram shows how the user records a participation in reponse to an event. When the
EventDialog is initialized, the ParticipationPanel will get the valid participant types from
the GUITrafficEventHolder and will get the ResponseParticipant objects from the
GUIOperationsCenter corresponding to the operations center where the user is logged in.
Each participant of a type applicable to the current GUITrafficEvent will be added to the
combo box. When the user chooses a response participant to participate in the event, the
ParticipationPanel will call the GUITrafficEventHolder to create a
ResponseParticipationData object (which will actually be a derived type depending on the
type of participant that was chosen). The GUITrafficEventHolder will then call the
TrafficEvent to add the response participation on the server side. If the participation is
successfully added, the server will push out an event and the participation will be added as
a row in the ParticipationPanel. See the sequence diagram:
HandleEventResponseParticipationAdded for details. If the user types in a mobile unit that
is not one of the units at the operations center, the ParticipationPanel will first check that
mobile units are supported by the event type. If so, it will call the GUIOperationsCenter
corresponding to the operations center where the user is logged in and ask it to add a
response participant. If this is successful, the ParticipationPanel adds the participation as
described above. An event will also be pushed by the server if a new participant is added to
the OperationsCenter, so that other GUIs will also see the new participant.

R1B2 GUI Detailed Design Rev. 0 3-207 11/20/00

addResponseParticipation

[no rights]
AccessDenied

[event closed or other error]
CHART2Exception

[event under control of another
op center and no override rights]

ResourceConflict

Response
Participation

Data

GUITrafficEvent
Holder GUI TrafficEvent

The actual class created
will be the one corresponding
to the type of the participant
selected and passed in. (i.e., a
OrganizationParticipationData
or ResourceDeploymentData
object will be created)

create
addResponseParticipation

get

GUITrafficEvent

getValidParticipantTypes

getValidParticipantTypes

The valid participant types
will be hard coded into each
type of event class.

GUI

GUIOperations
Center

Participation
Panel

The details of the
creation and initialization
of the Event Dialog are not
shown here, except for the
parts pertaining to
Response Participation.

[clicks on combo box
to add participant]
itemStateChanged

[opens event dialog]
"Initialize

ParticipationPanel"

getResponseParticipants

[* for each participant
matching the

appropriate types]
"Add To Combo Box"

ResponseParticipant[]

getValidParticipantTypes

If successful, the server
will push a
ResourceDeploymentAdded or
OrganizationParticipationAdded
event on the traffic event channel.

If successful, the
server will push a
ResponseParticipantAdded
event.

[error]
"Display Error"

[error]
addResponseParticipation

create
get

getToken

addResponseParticipation
[no rights]

AccessDenied
[event under control of another

op center and no override rights]
ResourceControlConflict

[event closed or other error]
CHART2Exception[error]

GUIException
[error]

"Display Error"

[error]

Response
Participant

Operations
Center

[error]
"Display Error"

[error]

[types in combo box
to add a CHART unit

and hits return]
keyPressed getValidParticipantTypes

[CHART Unit participants
not supported

for this event type] [CHART Unit does not exist]
create

addResponseParticipant

addEligible
ResponseParticipant

get
getToken

[no rights]
AccessDenied

[other error]
CHART2Exception[error]

GUIException

[error]
GUIException

getToken

Figure 143. GUITrafficEventModule:AddResponseParticipation

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-208 11/20/00

3.12.2.7 GUITrafficEventModule:AddResponsePlanItem (Sequence Diagram)

This diagram shows how a Response Plan Item is added to an event’s Response Plan. The
user drags and drops a ResponseDataCreator object onto the GUITrafficEventHolder
object. The GUITrafficEventHolder then calls it to create its specific type of
ResponsePlanItemData for the specific type of ResponseDataCreator. Then the
GUITrafficEventHolder calls the TrafficEvent to add the response plan item. If successful,
the server will push a CORBA event through the TrafficEvent channel. See the sequence
diagram: HandleEventResponsePlanItemAdded for details of the handling of this event. If
an error occurs, a CommandStatus object will be created so that the failure will appear in
the Command Failures window.

completed(success or failure reason)

Command
Status
Handler

CommandStatus

get

getCommandStatusHandler
createCommandStatus create

addResponsePlanItem
(ResponseDataCreator)

[event closed or other error]
CHART2Exception

[error]
GUIException

createResponsePlanItemData
create

isExecutable

getResponseTargetID

[event closed or user does not have rights]
"Reject Drag"

This will be
implemented by
reponse devices
and plan items.

Operator
GUTrafficEventHolder GUIResponsePlanItem

The user may also be able to drag
ResponseDataCreators to other
objects such as the EventDialog
or the traffic event navigator tree object,
but they will all delegate this functionality
to the GUITrafficEventHolder object.

Response
DataCreator

"Accept Drag"

If successful, the
server will push a
ResponsePlanItemAdded or
ResponsePlanItemModified
event. See the diagram:
HandleEventResponsePlanItemAdded
for details about the handling of a
new response plan item.

[drags object over event]
allowDrop

[drops ResponseDataCreator on event]
handleDrop

getResponseTargetID

isExecutable[item containing target ID is already in
plan and new RPID is not executable]

"Reject Drag"

[item with matching target ID in plan and new RPID not executable]
completed(failure)

addResponsePlanItem
(ResponsePlanItemData)

[object not ResponseDataCreator]
"Return drag permission for other types of objects"

[response plan item containing target ID already in plan
and new RPID is not executable]

[no rights]
AccessDenied

[event under control of
another op center and

no override rights]
ResourceControlConflict

ResponsePlanItemData The specific type of
ResponsePlanItemData
that will be created
depends on which type
of creator
is called to create it.

GUI TrafficEvent

createResponsePlanItemData
create

get
getToken

addResponseItem

Figure 144. GUITrafficEventModule:AddResponsePlanItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-209 11/20/00

3.12.2.8 GUITrafficEventModule:AddTextToEventHistory (Sequence Diagram)

This diagram shows how a text entry is added to the traffic event’s history log. When a user
types in a new entry and hits Enter, the Event Dialog calls the GUITrafficEventHolder to
add a log entry. This in turn calls the TrafficEvent CORBA interface to add the log entry. If
there is an error adding the entry, the error will be displayed in the dialog; otherwise, a
CORBA event will be pushed by the server containing the new log entry, and the GUI will
catch this event and add the row to the traffic event history display.

TrafficEvent

If successful, this will
cause a HistoryLogEntriesAdded
event to be pushed by the server.

The ability to
add log entries
will be disabled if
the user does not
have the correct
rights.

[enter key
pressed in

event log panel]
keyPressed addLogEntry

addLogEntry
[no rights]

AccessDenied
[other error]

CHART2Exception[error]
GUIException

[error]
"Display Error"

[error]

GUITrafficEventHolderEventDialog
Operator

GUI

get

getToken

Figure 145. GUITrafficEventModule:AddTextToEventHistory (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-210 11/20/00

3.12.2.9 GUITrafficEventModule:AssociateEvent (Sequence Diagram)

This diagram shows how an event is associated from the GUI. The user drags the secondary
event onto the primary event in the Navigator and drops it. The primary
GUITrafficEventHolder will call its own associateEvent() method, passing the secondary
event’s GUI wrapper. The primary GUITrafficEventHolder will then call the secondary
one, this time passing its own TrafficEvent CORBA interface object. The secondary
GUITrafficEventHolder will then call the passed TrafficEvent object, passing its own
TrafficEvent object as the event to associate. If successful, the server will push a CORBA
event with the new association. See the sequence diagram: HandleEventEventAssociated
for details. If the association fails, a CommandStatus object will be created so that the
failure will appear in the Command Failures window.

getCommandStatusHandler
createCommandStatus

create

completed (success or failure reason)

associateEvent
(secondary GUITrafficEventHolder)

associateEvent(secondary TrafficEvent)

get

getToken

[no rights]
AccessDenied

[no rights]
"Reject Drag"

[other error]
CHART2Exception

Command
Status
Handler

CommandStatusImpl

[no error]

[error]
GUIException

Operator

GUITraffic
EventHolder

(Primary)

TrafficEvent
(Primary)

The user may also
drag another event
over the event object
in the navigator tree
or the EventDialog
to associate. In that case
those objects will delegate
the call to the
GUITrafficEventHolder
object which they represent.

GUITraffic
EventHolder
(Secondary)

associateEvent
(primary TrafficEvent)

"Accept Drag"

GUI

[drags object over
GUITrafficEventHolder]

allowDrop

[secondary
event dropped]

handleDrop

[object does not
represent a eraffic event]

"Reject Drag"

[event is already
associated to this one]

"Reject Drag"

Figure 146. GUITrafficEventModule:AssociateEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-211 11/20/00

3.12.2.10 GUITrafficEventModule:ChangeEventType (Sequence Diagram)

This diagram shows how the event type is changed. The user clicks on a button in the
EventDialog indicating the type of event to change to. The EventDialog then calls the
GUITrafficEventHolder wrapper, which in turn calls the TrafficEvent CORBA interface to
change the event. If successful, the dialog will be changed immediately and a CORBA
event will be pushed by the server to update all of the other GUIs; otherwise, an error
message will be displayed in the dialog. See the sequence diagram:
HandleEventEventTypeChanged for details on the handling of the CORBA event that is
pushed.

[error]

typeChanged (
TrafficEvent,

BasicEventData)

getBasicEventData
[error]

CHART2Exception

[error]
"Display Error"

GUI

If successful, the server will push a
TrafficEventTypeChanged
event. See the sequence diagram:
HandleEventEventTypeChanged
for details.

TrafficEventGUITrafficEventHolder
Operator

EventDialog

This button will
be disabled if the
event is not open
or if the user does
not have rights.

[clicks on a
different event type]

actionPerformed changeType

changeType
[no rights]

AccessDenied
[event under control of

another op center and no
override rights]

ResourceControlConflict

[other error]
CHART2Exception

[invalid type]
UnknownEventType

[error]
GUIException

[error]
"Display Error"

[error]

get
getToken

new TrafficEvent
new TrafficEvent

See the sequence diagram:
HandleEventEventTypeChanged
for details on the effects of this
call.

Figure 147. GUITrafficEventModule:ChangeEventType (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-212 11/20/00

[DCE:293]

3.12.2.11 GUITrafficEventModule:CloseEvent (Sequence Diagram)

This diagram shows how a traffic event is closed from the GUI. The operator clicks on
“close” from the GUITrafficEventHolder’s menu or from the EventDialog, and the
GUITrafficEventHolder’s close() method is called, which calls the TrafficEvent CORBA
interface. If the traffic event is closed, a CORBA event will be pushed. See the sequence
diagram: HandleEventEventClosed for details.

If this command is invoked from the EventDialog,
the error message will be displayed to the user

[error]
GUIException

Command
Status
Handler

CommandStatus

getCommandStatusHandler

createCommandStatus
create

getToken

[no rights]
AccessDenied

[other error]
CHART2Exception

[event under control
of another op center

and no override rights]
ResourceControlConflict

Operator
GUITrafficEventHolder TrafficEvent GUI

This menu item or button
will be disabled if the user
does not have rights, or
if the event is already closed.

The EventDialog or
EventNavInstance may
actually be called instead,
but they will call the close
method.

If successful, the
server will push a
TrafficEventClosed
event.

close

[clicks on "close"]
actionPerformed

get

close

completed (success or failure reason)

Figure 148. GUITrafficEventModule:CloseEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-213 11/20/00

3.12.2.12 GUITrafficEventModule:Discovery (Sequence Diagram)

This diagram shows what happens in the GUITrafficEventModule during the discovery
phase, when CORBA event channels and objects are discovered. First, the CORBA event
channels are queried from the trader for TrafficEvent and CommLog event channels.
PushEventConsumer objects are created for each channel and added to the
EventConsumerGroup to maintain the connection to the event channels. During the object
discovery phase, the module queries the CommLog objects from the trader and adds them
to the GUICommLog object. Then the module queries the TrafficEventFactory objects, and
gets the TrafficEvent objects from the factories. For each TrafficEvent, a
GUITrafficEventHolder will be created and added to the DataModel if one does not already
exist for that traffic event. A GUITrafficEvent object will be created, whose type depends
on the type of traffic event discovered. Then the ResponseParticipation objects are obtained
from the traffic event and added to the GUITrafficEventHolder and to the DataModel.
Then traffic event associations are obtained from the TrafficEvent and
TrafficEventAssociation objects are created and added to the DataModel. Then the
ResponsePlanItems are retrieved, and for each one, the GUIResponsePlanItemCreators are
called until a type-specific GUIResponsePlanItem wrapper object is created for the
ResponsePlanItem. The GUIResponsePlanItems are added to the GUITrafficEventHolder
and to the DataModel. Then the entries are retrieved from the TrafficEvent’s history log and
are added to the GUITrafficEventHolder’s cache of log entries.

R1B2 GUI Detailed Design Rev. 0 3-214 11/20/00

create

add

[* for each event
channel found]

GUICommLog

query
(CommLog objects)

get
addCommLog

The module will compare the lane
configurations obtained from the factory
to the existing ones and will add any new
lane configurations.

getStandardLaneConfigurations

GUITrafficEvent

This will be a
derived class
whose type
depends on the
type of event that
was discovered.

getBasicEventData

create

create
add

discoverObjects

query
(TrafficEventFactory

objects)

[* for each
Traffic
Event

Factory]

[* for each
TrafficEvent]

getObject
[not in DataModel]

create

objectUpdated (GUITrafficEventHolder)

getResponseItems

[not in DataModel]
[* for each GUIResponsePlanItemCreator]

createGUIResponsePlanItem [correct type of
ResponsePlanItem]

createnull or GUIResponsePlanItem (if correct type)

getObject

[* for each
ResponsePlanItem]

[GUIResponsePlanItem created]
objectAdded

getID

LogIterator
getHistory

[more entries]
create"entries and Iterator"

[GUIResponsePlanItem created]
responsePlanItemAdded

logEntriesAdded

getMoreEntries
[* while more

entries] logEntriesAdded

PushEvent
Consumer

Event
Consumer

GroupTrafficEvent
Factory

Response
PlanItem

GUIResponse
PlanItem
Creator

GUIResponse
PlanItem

The actual type of
GUIResponsePlanItem
will correspond to the
type of ResponsePlanItem.

getTrafficEvents

getID

[* for each
associated

event]

discoverEventChannels query (TrafficEvent
event channels)

query (CommLog
event channels)

objectAdded
(GUIResponseParticipation)

[* for each
Response

Participation]

A GUIOrganizationParticipation
or GUIResourceDeployment
will be created, depending
on which type of participation
object is found.

create
participationAdded

GUIResponse
Participation

getResponseParticipations

GUITraffic
EventHolder

GUI
Discovery

Thread

GUITrafficEvent
Module

CosTrading.
Lookup DataModel

[* for each event
channel found]

getAssociatedEvents

objectAdded (GUITrafficEvent)

TrafficEvent

Comm
Log

Client

The processing after the objects are queried from the trader will occur on
another thread to avoid tying up the discovery thread, but is
shown on the discovery thread here due to space limitations.

addCommLog
[not in

CommLogClient]
"Add CommLog"

[* for each
Comm Log]

objectAdded (GUITrafficEventHolder)

LogFiltercreate

TrafficEvent
Association

The TrafficEventAssociation
object will have to
implement hashcode()
and equals() in such a
way to avoid duplicates
in the DataModel.

create
objectAdded

(TrafficEventAssociation)

Figure 149. GUITrafficEventModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-215 11/20/00

3.12.2.13 GUITrafficEventModule:ExecuteResponse (Sequence Diagram)

This diagram shows how a response plan is executed. The user clicks on the “Execute”
button or menu item, and the GUITrafficEventHolder’s executeResponse() method is
called, which calls the TrafficEvent’s executeReponse(). As the response plan is executed,
the server will push an event to indicate that the response plan’s status has changed. If an
error occurs immediately, a message will be displayed in the dialog or a
CommandStatusImpl object will be created to show the command failure. If the response
plan is successfully executed, the server will push a PlanStatusChanged event and the
GUIResponsePlanItems will be updated to show the status of the individual items. Upon
failure of individual items, a CommandStatusImpl object will be created to show the failure
in the CommandFailures window.

getCommandStatusHandler

createCommandStatus
create

[error]
completed (failure reason)

completed (success)

Command
Status

Handler

CommandStatus

Operator

GUITraffic
EventHolderEventDialog TrafficEvent GUI

This may also be called
from the Navigator,
via the popup menu for
the GUITrafficEventHolder.

If the user does not
have rights or the event
is closed, this functionality
will be disabled.

If successful,
the server will push
ResponsePlanStatusChanged
CORBA events to show the progress
of the execution, in addition to
the type-specific CORBA events that
are pushed as a result of the items
being activated.

executeResponse

executeResponse

get

getToken

[no rights]
AccessDenied

[other error]
CHART2Exception

[clicks on
"Execute" button]
actionPerformed

[event under control of
another op center

and no override rights]
ResourceControlConflict

[error]
GUIException

[error]
"Display Error"

[error]

Figure 150. GUITrafficEventModule:ExecuteResponse (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-216 11/20/00

3.12.2.14 GUITrafficEventModule:ExecuteResponseItem (Sequence Diagram)

This diagram shows how one or more response plan items are executed. The user clicks on
the “Execute Selected Items” button or menu item, and the GUIResponsePlanItem’s
execute() method is called, which calls the ResponsePlanItem’s execute(). If successful, the
server will push a PlanStatusChanged event and the GUIResponsePlanItems will be
updated to show the status of the individual items. Upon failure of individual items, a
CommandStatusImpl object will be created to show the failure in the CommandFailures
window.

Operator
GUIResponsePlanItemEventDialog ResponsePlanItem GUI

This may also be called
from the Navigator,
via the popup menu for
the GUIResponsePlanItem
objects.

If the user does not
have rights or the event
is closed, this functionality
will be disabled.

If successful,
the server will push
ResponsePlanStatusChanged
CORBA events to show the progress
of the execution, in addition to
the type-specific CORBA events that
are pushed as a result of the items
being activated.

[clicks on "Execute
Selected Items"

button]
actionPerformed

execute
get

getToken

execute
[no rights]

AccessDenied

[other error]
CHART2Exception

[event under control of
another op center

and no override rights]
ResourceControlConflict

[error]
GUIException

[error]

[errors]
"Display Errors"

[* for each
selected

GUIResponsePlanItem]

Figure 151. GUITrafficEventModule:ExecuteResponseItem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-217 11/20/00

3.12.2.15 GUITrafficEventModule:GetEventHistoryText (Sequence Diagram)

This diagram shows how a log search is done. The user clicks on the search button in the
EventDialog, and a search dialog is displayed and initialized with the settings from the last
LogFilter (if any). The user enters the search criteria and presses the “OK” or “Search”
button. This causes a LogFilter to be created and then an EventLogSearcher thread is
created and started for the asynchronous search. The thread calls the getHistory() method of
the GUITrafficEventHolder, which in turn calls the TrafficEvent. Results from the search
(either errors or LogEntries) are stored in SearchErrorCommand objects or
SearchEntriesFoundCommand objects and are invoked later on the main AWT event
thread. (This is necessary to ensure proper interaction between the search dialog and the
search results). If there are more entries, the LogIterator will be used to get them. When the
search dialog receives a new batch of log entries, it will sort them to ensure that they are
displayed in the correct order.

"Display Error"

Operator

EventDialog
GUITraffic

EventHolder

TrafficEvent
LogSearch

Dialog

LogFilter

EventLog
Searcher

GUI TrafficEvent

SearchError
Command

javax.swing.
SwingUtilities

Search
EntriesFound

Command

LogIterator

[clicks on "Search
Event Log"]

actionPerformed create

[existing filter]
"Get Data"

[existing filter]
"Initialize From Data"

show

[user clicks "OK" or "Search"]
actionPerformed

create

start

setDaemon

get
getToken

getHistory

getHistory

[error]
CHART2Exception

"Entries and Iterator"

[error]
GUIException

"Entries and
Iterator"

[error]
create

[error]
invokeLater

[success]
create

[success]
invokeLater

[more
entries]
create

getMoreEntries
[more entries]

create
[more entries]
invokeLater

[error]
run

errorReturned

[success]
run

searchEntriesReturned

"Sort and Display
Search Entries"

[* while more
entries]

create

Java

run

Figure 152. GUITrafficEventModule:GetEventHistoryText (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-218 11/20/00

[DCE:303]

3.12.2.16 GUITrafficEventModule:HandleEventCommLogEntryAdded (Sequence
Diagram)

This diagram shows the processing that is done when a LogEntryAdded event is pushed to
the GUI. The CommLogPushReceiver catches the event and calls the GUICommLog’s
entryAdded() method. The entry is added to the GUICommLog’s cache and the
GUICommLog calls the DataModel to notify all observers that the GUICommLog has been
updated.

ORB

CommLog
PushReceiver GUICommLog GUI DataModel

The DataModel will update
any attached observers (such
as the Comm Log dialog)
asynchronously.

push
(LogEntryAdded)

get

entryAdded
get

getDataModel
objectUpdated

Figure 153. GUITrafficEventModule:HandleEventCommLogEntryAdded

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-219 11/20/00

3.12.2.17 GUITrafficEventModule:HandleEventEventAdded (Sequence Diagram)

This diagram shows the processing that occurs when a TrafficEventAdded CORBA event is
pushed to the GUI. The TrafficEventPushReceiver receives the event, and creates a
GUITrafficEventHolder object if one does not already exist in the DataModel with the
same ID. (The GUITrafficEventHolder may already exist if this GUI just created a new one
before calling the TrafficEvent). The GUITrafficEventHolder will create a
GUITrafficEvent, whose type depends on the type of BasicEventData passed in. The
GUITrafficEventHolder and GUITrafficEvent are added to the DataModel. Any log entries
are then added to the GUITrafficEventHolder object. As it is a new event, there may or may
not be existing log entries; however, there will not be any response plan items or response
participations.

logEntriesAdded

DataModelGUI

GUITrafficEventHolder

GUITrafficEvent

TrafficEvent

Check if the object exists in case
this GUI just created it.

The type of
GUITrafficEvent
created depends on the
type of BasicEventData
passed in.

ORB

objectAdded(GUITrafficEventHolder)

objectAdded(GUITrafficEvent)

push
(TrafficEventAdded)

getID

get
getDataModel

getObject

[not found]
create(TrafficEvent,

BasicEventData)

create

get
getDataModel

TrafficEvent
PushReceiver

Figure 154. GUITrafficEventModule:HandleEventEventAdded (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-220 11/20/00

3.12.2.18 GUITrafficEventModule:HandleEventEventAssociated (Sequence Diagram)

This diagram shows the processing that occurs when a TrafficEventAssociated or
TrafficEventAssociationRemoved event is received in the GUI. The
TrafficEventPushReceiver receives the event, then it calls the GUITrafficEventModule to
find the association. If the association was added and the TrafficEventAssociation object
did not exist, a new TrafficEventAssociation is created and added to the DataModel. If the
TrafficEventAssociation did exist and the association was removed, then it will be removed
from the DataModel.

TrafficEventAssociation or null if not found

The hashKey() and
equals() methods will
be reflexive with
respect to the IDs
to prevent duplicates
in the DataModel.

TrafficEvent
Association[association added]

create

getAllObjectsOfType
(EventAssociation)

[association
added and found]

[association
removed and

not found]

get

getDataModel

[association added]
objectAdded

[association removed]
objectRemoved

TrafficEvent
PushReceiver GUI DataModel

getDataModel

push
(TrafficEventAssociated)

get

ORB
GUITrafficEventModule

get
findAssociation

Figure 155. GUITrafficEventModule:HandleEventEventAssociated

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-221 11/20/00

3.12.2.19 GUITrafficEventModule:HandleEventEventClosed (Sequence Diagram)

This diagram shows the processing that occurs if the event is closed and a
TrafficEventClosed event is received in the GUI. The TrafficEventPushReceiver receives
the pushed event, and calls the GUITrafficEventHolder to inform it that it’s closed. The
GUITrafficEventHolder updates any state data and then calls the DataModel’s
objectUpdated() method to notify all interested observers of the change.

ORB

TrafficEvent
PushReceiver

GUITraffic
EventHolder

The DataModel will
cause the update()
method to be called
for all GUIModelObservers
on the main AWT
event thread at a
later time.

GUI

eventClosed

"Update State Data"

get
getDataModel

objectUpdated

DataModel

push
(TrafficEventClosed)

Figure 156. GUITrafficEventModule:HandleEventEventClosed

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-222 11/20/00

3.12.2.20 GUITrafficEventModule:HandleEventEventDeleted (Sequence Diagram)

This diagram shows the processing that happens when a traffic event is removed from the
system and a TrafficEventDeleted CORBA event is pushed to the GUI. The
TrafficEventPushReceiver catches the event and calls the GUITrafficEventHolder to inform
it that the event was removed. The GUITrafficEventHolder calls the GUITrafficEvent to
clean itself up. This will cause all panels in the TrafficEventDialog which apply to the event
to be cleaned up and the references to the event removed. Any references held by the
GUITrafficEventHolder will be cleaned up, and the GUITrafficEvent and
GUITrafficEventHolder will be removed from the DataModel. All input on the
EventDialog will be disabled. A message will be displayed to the user explaining that the
event was removed from the system and the input will be disabled in the event history log.

"Display Error
Message

The observers' update() methods
are called by the DataModel at
some later time.

"Disable
History Log"

All other input
has already been
disabled because the
event is closed.

A message will
be displayed to the
user indicating that
the event has been
removed from the
system.

objectRemoved (GUITrafficEvent)

[* for each GUIResponseParticipation]
objectRemoved (GUIResponseParticipation)

update

ORB

TrafficEvent
PushReceiver DataModelGUI

GUITraffic
EventHolder GUITrafficEvent

Clean up the
GUITrafficEvent.
Includes cleaning up
panels and removing
references to them.
The panels should not
have references to the
GUITrafficEvent. If they
do, these references
need to be nulled out.

EventDialog

push
(TrafficEventDeleted) eventRemoved

cleanup

"Remove Reference
To TrafficEvent"

[* for each LogEntry]
"Remove Reference"

get
getDataModel

objectRemoved
(GUITrafficEventHolder)

Figure 157. GUITrafficEventModule:HandleEventEventDeleted

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-223 11/20/00

3.12.2.21 GUITrafficEventModule:HandleEventEventTypeChanged (Sequence

Diagram)

This diagram shows the processing that occurs when a TrafficEventTypeChanged event is
received on the TrafficEvent channel. The TrafficEventPushReceiver receives the event,
and notifies the GUITrafficEventHolder that the type has changed. The
GUITrafficEventHolder creates a new GUITrafficEvent and replaces its reference to the
event. The old GUITrafficEvent is removed from the DataModel and the new one is added,
and the GUITrafficEventHolder calls the DataModel to inform interested observers that it
has changed. The EventDialog will receive an update from the DataModel and will remove
all of the panels for the old GUITrafficEvent, and the old GUITrafficEvent will clean itself
up and be deleted. The new GUITrafficEvent will supply all of the panels for the
EventDialog, and these panels will be added to the dialog and displayed.

An error will be logged
in the GUI log file if the
traffic event is not found.

The GUI originating the
type change will already
be updated, so this check
is to ensure that the update
to that GUI is not done again.

[new TrafficEvent same reference
as current TrafficEvent]

EventTypeChangeHint

The type of
GUITrafficEvent
created will be
determined by the
type of BasicEventData
that is received

Clean up the old GUITrafficEvent.
Includes cleaning up panels and
removing references to them.
The panels should not have
references to the old
GUITrafficEvent. If they do,
these references need to be
nulled out.

javax.swing.
JPanel

The panels created will
be all panels necessary to
display the data
pertaining to the specific
type of event.

The DataModel
will call the observers
on the main AWT
event thread at a
later time.

create

objectUpdated
(GUITraffic

EventHolder)

update

"Replace reference
to old GUITrafficEvent
with reference to new

GUITrafficEvent"

"Remove all
panels from

JTabbedPane"

cleanup

changeEventType
(oldEvent, newEvent)

getTabPanes

push
(TrafficEvent

TypeChanged) get
getDataModel

getObject[not found]
typeChanged(TrafficEvent, BasicEventData)

get

create(old GUITrafficEvent, new GUITrafficEvent)

[* for each
applicable

panel]
create

TabPaneInfo[]

"Add the
components and
reshape frame"

ORB

TrafficEvent
PushReceiver

GUITraffic
EventHolder GUITrafficEventGUI DataModel EventDialog

objectRemoved
(old GUITrafficEvent)

objectAdded
(new GUITrafficEvent)

getDataModel

[event
not changed]

Figure 158. GUITrafficEventModule:HandleEventEventTypeChanged

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-224 11/20/00

3.12.2.22 GUITrafficEventModule:HandleEventResponseParticipationAdded

(Sequence Diagram)

This diagram shows the processing that occurs when a ResourceDeploymentAdded or
OrganizationParticipationAdded event is received on the TrafficEvent event channel. The
TrafficEventPushReceiver receives the event and creates a GUIOrganizationParticipation or
GUIResourceDeployment, and adds it to the GUITrafficEventHolder. The
GUITrafficEventHolder calls the DataModel to inform all interested observers that it has
changed, so that the EventDialog can be updated with the new participation. The new object
will also be added to the DataModel.

get

DataModel
GUITraffic

EventHolder

push
(ResourceDeploymentAdded

or
OrganizationParticipationAdded) get

getDataModel

getObject

GUIResponse
Participation

A GUIOrganizationParticipation
or GUIResourceDeployment
will be created, depending on
which type of event is received.

The DataModel will asynchronously
call all of the observers attached
to it, informing them of the new object.
The EventDialog and/or
ParticipationPanel will be attached
to the DataModel, so it will receive the
update and add the row to the
participation table.

participationAdded

create

objectAdded
(GUIResponseParticipation)

[GUITrafficEventHolder
 not found]

getDataModel
objectUpdated

(GUITrafficEventHolder)

ORB

TrafficEvent
PushReceiver GUI

Figure 159. GUITrafficEventModule:HandleEventResponseParticipationAdded

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-225 11/20/00

3.12.2.23 GUITrafficEventModule:HandleEventResponseParticipationRemoved

(Sequence Diagram)

This diagram shows the processing that occurs when a ParticipationRemoved event is
received by the TrafficEvent channel. The TrafficEventPushReceiver receives the event,
gets the GUIResponseParticipation object from the DataModel, and asks it for the
GUITrafficEventHolder. The GUITrafficEventHolder removes the
GUIResponseParticipation from itself and calls the DataModel to update any observers
(notably the EventDialog). The GUIResponseParticipation object is also removed from the
DataModel.

The DataModel will asynchronously
update all attached observers.

participationRemoved

objectUpdated (GUITrafficEventHolder)

get
getDataModel

cleanup

objectRemoved
(GUIResponseParticipation)

ORB

TrafficEvent
PushReceiver GUI

GUIResponse
ParticipationDataModel

GUITraffic
EventHolder

push
(ParticipationRemoved)

get

getDataModel

getObject[GUIResponseParticipation
not found] getEvent

An error will be logged
in the GUI log file if the
response participation is
not found.

Figure 160. GUITrafficEventModule:HandleEventResponseParticipationRemoved

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-226 11/20/00

3.12.2.24 GUITrafficEventModule:HandleEventResponsePlanItemAdded (Sequence

Diagram)

This diagram shows the processing that occurs when a ResponsePlanItemAdded event is
received on the TrafficEvent event channel. The TrafficEventPushReceiver receives the
event and calls the GUITrafficEventModule to tell it that a new ResponsePlanItem has been
added. The module then calls each of the installed GUIResponsePlanItemCreators to create
a GUIResponsePlanItem wrapper for the ResponsePlanItem. (A
GUIResponsePlanItemCreator will examine the type of the ResponsePlanItemData and if it
recognizes the type, it will create the wrapper). The module then gets the
GUITrafficEventHolder from the DataModel and adds the GUIResponsePlanItem to its list,
and updates itself through the DataModel to inform any interested observers of the change.
The GUIResponsePlanItem is also added to the DataModel.

These errors will also
be logged to the GUI's log file.

GUITraffic
EventModule

[no GUIResponsePlanItem
was created]

responsePlanItemAdded

[* for each
GUIResponsePlanItemCreator

until GUIResponsePlanItem
is created]

[event not found in
DataModel][event not found

in DataModel]

"Add Response
Item To List"

push
(ResponsePlanItemAdded)

get

ORB

TrafficEvent
PushReceiver

GUIResponse
PlanItem

GUITraffic
EventHolderGUI DataModel

The specific type of
GUIResponsePlanItem
will be determined by
which type of
ResponsePlanItemData is
passed.GUIResponse

PlanItemCreator

getDataModel

getObject

[* for each GUIResponsePlanItemCreator]
createGUIResponsePlanItem

[ResponsePlanItemData
is the correct type

for the creator]
create

null or GUIResponsePlanItem

[no GUIResponsePlanItem
was created]

objectAdded(GUIResponsePlanItem)

responsePlanItemAdded

get
getDataModel

objectUpdated
(GUITrafficEventHolder)

Figure 161. GUITrafficEventModule:HandleEventResponsePlanItemAdded

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-227 11/20/00

3.12.2.25 GUITrafficEventModule:HandleEventTrafficEventStateChanged (Sequence

Diagram)

This diagram shows the processing that occurs if the event data is changed and a
TrafficEventStateChanged event is received in the GUI. The TrafficEventPushReceiver
receives the pushed event, and calls the GUITrafficEventHolder to inform it that the state
has changed. The GUITrafficEventHolder updates any state data and then calls the
DataModel’s objectUpdated() method to notify all interested observers of the change.

ORB

TrafficEvent
PushReceiver GUI DataModel

GUITraffic
EventHolder

push
(TrafficEventStateChanged)

The DataModel will
cause the update()
method of all observers
to be called asynchronously.
These observers will include
the event dialog and
possibly its sub-panels.

eventStateChanged

"Update
State
Data"

get
getDataModel

objectUpdated

Figure 162. GUITrafficEventModule:HandleEventTrafficEventStateChanged

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-228 11/20/00

3.12.2.26 GUITrafficEventModule:Login (Sequence Diagram)

This diagram shows the processing that is done when the user logs in. The GUI calls the
loggedIn() method of the GUITrafficEventModule. The module gets the toolbar and
enables the “Comm Log” button if the user has rights.

loggedIn

GUIToolBarTokenManipulator

checkAccess

getToolBar
[user has rights to view or manage

the Comm Log]
enableButton ("Comm Log")

GUI

GUITrafficEvent
Module

Figure 163. GUITrafficEventModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-229 11/20/00

3.12.2.27 GUITrafficEventModule:Logout (Sequence Diagram)

This diagram shows the processing that is performed at logout. The GUI calls the
GUITrafficEvent’s loggedOut() method. Currently no other work is done at logout.

GUI

GUITrafficEvent
Module

This module does not perform any work on logout.

loggedOut

Figure 164. GUITrafficEventModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-230 11/20/00

3.12.2.28 GUITrafficEventModule:ModifyResponseParticipationData (Sequence

Diagram)

This diagram shows an example of how a ResponseParticipation will be modified from the
GUI. The user may click on the “Notified” check box, which will cause the setNotified()
method of the GUIResponseParticipation object to be called, which will in turn call the
corresponding setNotified() method of the ResponseParticipation CORBA interface. If
successful, an OrganizationParticipationChanged or ResourceDeploymentChanged event
will be pushed by the server.

Operator

GUIResponse
Participation GUI Response

Participation

The detailed mechanics
of how the setNotified() method
is called are left for implementation.

The appropriate
error message will
be displayed to the user.
The details of how this is done
are left for implementation.

If successful, the
server will push an
OrganizationParticipationChanged
or ResourceDeploymentChanged
event, depending on the type of
ResponseParticipation which is
being changed.

[clicks on "Notified"
check box]
setNotified get

getToken
setNotified

[no rights]
AccessDenied

[another op center controlling
the event and no override rights]

ResourceControlConflict

[other error]
CHART2Exception

[error]
GUIException

Figure 165. GUITrafficEventModule:ModifyResponseParticipationData

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-231 11/20/00

3.12.2.29 GUITrafficEventModule:ModifyResponsePlanItemMessage (Sequence

Diagram)

This diagram shows how a message might be modified for a ResponsePlanItem. (NOTE -
this operation depends on the type of ResponsePlanItem, so the design may differ
somewhat for different types). The operator clicks on the “Edit Message” menu item on the
GUIResponsePlanItem’s context menu. The GUIResponsePlanItem catches the command
and calls doProperties() on itself. This creates a message editor, which calls the
GUIResponsePlanItem to get the item data, which in turn calls the ResponsePlanItem
CORBA interface. There may be no data returned, in the case that the message has not been
set. In this case, a new ResponsePlanItemData will be created by the message editor. The
message editor will then initialize itself with the ResponsePlanItemData (either retrieved
from the ResponsePlanItem or just created). When the user modifies the message and clicks
“OK” in the message editor dialog, the dialog sets the data in a ResponsePlanItemData and
calls the GUIResponsePlanItem to set the item data, which then calls the
ResponsePlanItem. If successful, the message editor will be closed; otherwise, it will
remain open and an error will be displayed. A ResponsePlanItemModified event will also
be pushed to all of the GUIs if it is successful.

R1B2 GUI Detailed Design Rev. 0 3-232 11/20/00

getToken

setItemData
[no rights]

AccessDenied
[other error]

CHART2Exception
[error]

GUIException
[error]

"Display Error"
[error]

closeWindow

[error]
GUIException

Operator

GUIResponse
PlanItem ResponsePlanItem

The menu item and
GUIResponsePlanItem
are type-specific. For
illustration purposes,
"Edit Message" is used,
although the actual
menu item may be
different.

GUI ResponsePlanItemData

"Message
Editor"

These are type-specific classes,
shown here as a suggestion of
how they might work; however,
the actual design may be different
depending on the type.

[clicks on
"Edit Message"]
actionPerformed

doProperties

getItemData

get
getToken

[no rights]
AccessDenied

[other error]
CHART2Exception

show

[clicks "OK"]
actionPerformed "Set

Message
Data"setItemData

create

getItemData

[no R.P.I.D returned]
create

If successful, this will
cause the server to push a
a ResponsePlanItemModified
event.

"Get Message Data"

"Initialize With
Message Data"

[error]

[error]
"Display Error"

ResponsePlanItemData

get

ResponsePlanItemData

Figure 166. GUITrafficEventModule:ModifyResponsePlanItemMessage

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-233 11/20/00

3.12.2.30 GUITrafficEventModule:RemoveItemFromResponse (Sequence Diagram)

This diagram shows how a response plan item is removed from a response plan. The user
clicks on the “Remove” button in the EventDialog, or from the GUIResponsePlanItem’s
context menu. The GUIResponsePlanItem’s remove() method is called, which calls the
ResponsePlanItem’s remove() method. The server will push a ResponsePlanItemsRemoved
event if it is successful; otherwise, an error message will be displayed in the EventDialog or
in the Command Failures window if the command was not invoked from the dialog.

EventDialog

If successful, the server
will push a
ResponsePlanItemsRemoved
event.

[error]

remove

[error]
GUIException

[error]
"Display Error"

Operator
GUIResponsePlanItem ResponsePlanItem GUI

This button
will be disabled if
the user does not
have rights.

[clicks on the
"Remove" button]
actionPerformed

remove

get
getToken

[no rights]
AccessDenied

[other error]
CHART2Exception
[event controlled

by another op center
and no override rights]

ResourceControlConflict

Figure 167. GUITrafficEventModule:RemoveItemFromResponse

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-234 11/20/00

3.12.2.31 GUITrafficEventModule:RemoveResponseParticipation (Sequence

Diagram)

This diagram shows how a ResponseParticipation is removed. The user clicks on the
“Remove” menu item on the GUIResponseParticipation’s context menu, and it calls
remove() on itself. This calls the ResponseParticipation CORBA interface remove()
method. This will cause the server to push a ParticipationRemoved CORBA event if
successful; otherwise, an error is displayed in the EventDialog. See the sequence diagram:
HandleEventResponseParticipationRemoved for details on the handling of the event.

Operator

GUIResponse
Participation

The mechanics of how
the remove method is
called will be left for
implementation.

Response
ParticipationGUI

The error will be displayed
to the user somewhere in the
Event Dialog. The mechanics
of this are left for implementation.

If successful, the server
will push a ParticipationRemoved
CORBA event. See the diagram
HandleEventResponseParticipationRemoved
for details.

[clicks on "Remove" from
the response participation

object's menu]
actionPerformed

remove

get
getToken

[no rights]
AccessDenied

[event controlled by another
op center and no override rights]

ResourceControlConflict

[other error]
CHART2Exception[error]

GUIException

remove

Figure 168. GUITrafficEventModule:RemoveResponseParticipation

(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-235 11/20/00

3.12.2.32 GUITrafficEventModule:SearchCommLog (Sequence Diagram)

This diagram shows how a log search is done. The user clicks on the search button in the
CommLogDialog, and a search dialog is displayed and initialized with the settings from the
last LogFilter (if any). The user enters the search criteria and presses the “OK” or “Search”
button. This causes a LogFilter to be created and then a CommLogSearcher thread is
created and started for the asynchronous search. The thread calls the getEntries() method of
the GUICommLog, which in turn calls the CommLog object(s) it contains. Results from the
search (either errors or LogEntries) are stored in SearchErrorCommand objects or
SearchEntriesFoundCommand objects and are invoked later on the main AWT event
thread. (This is necessary to ensure proper interaction between the search dialog and the
search results). If there are more entries, the LogIterator will be used to get them. When the
search dialog receives a new batch of log entries, it will sort them to ensure that they are
displayed in the correct order.

Operator

CommLogDialog GUICommLog

CommLog
SearchDialog

LogFilter

CommLog
Searcher

GUI CommLogClient

LogSearchError
Command

javax.swing.
SwingUtilities

LogEntriesFound
Command

LogIterator

[clicks on "Search
Comm Log"]

actionPerformed create

[existing filter]
"Get Data"

[existing filter]
"Initialize From Data"

show

[user clicks "OK" or "Search"]
actionPerformed

create

create

start

getEntries get
getToken

getEntries

[error]
CHART2Exception[error]

GUIException
[error]
create

[error]
invokeLater

[more
entries]
create"Entries and Iterator"

"Entries and
Iterator"

[* while
more

entries]

[success]
create

[more entries]
create

[more entries]
invokeLater

[entries found]
run

[error]
run

searchEntriesReturned

errorReturned

"Display Error"

setDaemon

Java

run

getMoreEntries

"Sort and Display
Search Entries"

[success]
invokeLater

Figure 169. GUITrafficEventModule:SearchCommLog (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-236 11/20/00

[DCE:337]

3.12.2.33 GUITrafficEventModule:SetLaneConfiguration (Sequence Diagram)

This diagram shows how a lane configuration is set. During discovery, the possible
standard lane configurations were obtained from the TrafficEventFactory objects and stored
in the GUITrafficEventModule. The operator will be able to select one of the lane
configurations. Then the operator clicks on “Set Lane Configuration”, which gets the lane
configuration data for each lane in the panel. A LaneConfiguration object is created, and the
GUITrafficEvent’s setLaneConfiguration() method is called. This calls the RoadwayEvent
interface to set the lane configuration. If successful, the server will push a
LaneConfigurationChanged event.

getToken

setLaneConfiguration

[no rights]
AccessDenied

[other error]
CHART2Execption

[event under control
of another op center

and no override rights]
ResourceControlConflict

[error]
GUIException

[error]
"Display Error"

[error]

Operator

Lane
Configuration

Panel GUITrafficEvent

Lane

LaneConfiguration

[clicks on
"Set Lane

Configuration"]
actionPerformed

create

create

"Get Data
For Lane"[* for each

lane in
panel]

RoadwayEvent GUI

This button will
be disabled if the user
does not have rights.

If successful, the server
will push a
LaneConfigurationChanged
event.

setLaneConfiguration
get

Figure 170. GUITrafficEventModule:SetLaneConfiguration (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-237 11/20/00

3.12.2.34 GUITrafficEventModule:Shutdown (Sequence Diagram)

This diagram shows the processing that happens at shutdown. The GUI calls the
GUITrafficEventModule’s shutdown() method, which deactivates the
TrafficEventPushReceiver and CommLogPushReceiver objects.

GUI
GUITrafficEventModule POA

shutdown
deactivate_object

(TrafficEventPushReceiver)

deactivate_object
(CommLogPushReceiver)

Figure 171. GUITrafficEventModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-238 11/20/00

3.12.2.35 GUITrafficEventModule:Startup (Sequence Diagram)

This diagram shows the processing that is done at GUI startup. The GUI calls the startup()
method of the GUITrafficEventModule, and the module adds the “Comm Log” button to
the GUI toolbar. The module adds itself as a filter supporter, so that it can create the
navigator filters when they are requested. A GUICommLog object is created and added to
the DataModel. Also, the TrafficEventPushReceiver and CommLogPushReceiver objects
are created and activated, so that they can receive any CORBA events that are pushed on
either the TrafficEvent or CommLog event channels, respectively. Sometime later, the
FilterManager object may call the GUITrafficEventModule to create any default system
filters if the filters were not loaded successfully from the system profile. If this happens, the
module will create an EventNavGroup system filter and return it.

CommLogClientcreate

GUIToolBar

getToolBar
addButton ("Comm Log")

GUICommLog

TrafficEvent
PushReceiver

CommLog
PushReceiver

create

objectAdded (GUICommLog)

create

create

activate_object
(TrafficEventPushReceiver)

activate_object
(CommLogPushReceiver)

FilterManager

getFilterManager

addFilterSupporter

FilterManager

[filters not loaded from
system profile]

getDefaultSystemFilters()

GUI
GUITrafficEventModule

EventNavGroup

DataModel POA

Activated to be able
to receive CORBA
events pushed through
the event channel.

startup

create

Figure 172. GUITrafficEventModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-239 11/20/00

3.13 GUIUserManagementModule

3.13.1 Class Diagrams

3.13.1.1 GUIUserManagementClasses (Class Diagram)

This diagram shows the classes used by the GUIUserManagement module and their
relationships.

0..1

1

11
UserConfigurationDialog

RoleConfigurationDialog

UserManager

InstallableModule

java.awt.event.
ActionListener

UserLoginsDialog

CreateUserDialogCreateRoleDialog

GUIUserManagementModule

0..11

createdUser(userName)

createdRole(role,description)
-getRoleFunctionalRights() : rightsList
-setRoleFunctionalRights(rightsList)

-forceLogout()

get()
getUserManager()
configureUsers()
configureRoles()
getOpenedUserConfigDialog()
setOpenedUserConfigDialog()
getOpenedRoleConfigDialog()
setOpenedRoleConfigDialog()
getSystemProfile():Profile
getUserProfile():Profile

Figure 173. GUIUserManagementClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-240 11/20/00

3.13.1.1.1 CreateRoleDialog (Class)

This dialog allows the administrator to create a new role.

3.13.1.1.2 CreateUserDialog (Class)

This dialog allows the administrator to create a new user.

3.13.1.1.3 GUIUserManagementModule (Class)

This class implements the InstallableModule interface and performs functionality for
managing user rights. It can be called to configure the roles and users, or to force a logout.

3.13.1.1.4 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.13.1.1.5 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.13.1.1.6 RoleConfigurationDialog (Class)

This dialog allows the administrator to configure the roles in the system. It supports the
Create Role, Delete Role, and Set Role Functional Rights functionality. If the user does not
have role configuration rights, all editing functionality will be disabled.

3.13.1.1.7 UserConfigurationDialog (Class)

This dialog allows the administrator to view or configure the users’ roles, assuming the
roles have been defined. It supports the Create User, Delete User, Change User Password,
Grant Role and Revoke Role functionality. If the user has view rights but not configuration
rights, all configuration abilities will be disabled.

3.13.1.1.8 UserLoginsDialog (Class)

This dialog displays a list of currently logged in users and allows the administrator to force
one or more users to be logged out.

R1B2 GUI Detailed Design Rev. 0 3-241 11/20/00

3.13.1.1.9 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

R1B2 GUI Detailed Design Rev. 0 3-242 11/20/00

3.13.2 Sequence Diagrams

3.13.2.1 GUIUserManagementModule:AddUser (Sequence Diagram)

This diagram shows how a user is added to the system. From the User Configuration
Dialog, the administrator clicks on “New User”, and the Create User Dialog is invoked.
When the administrator clicks “OK”, if the new password is the same as the confirmation
password, the dialog will call the UserManager to create the user. If the user name or
password are invalid, a message box will be displayed and the administrator will be given a
chance to correct the mistake. If the user was successfully created, it will be added to the
User Configuration dialog if it is still open.

CreateUser
Dialog

javax.swing.
JOptionPane

GUIUserManagement
ModuleGUIUserManager

create

show

add user
to list of
users

[invalid name or
password]

showMessageDialog

createUser

[invalid name or
invalid password]

allow administrator to retype

[AccessDenied or
CHART2Exception]

[clicks on New User]
actionPerformed

getToken

[InvalidName or
InvalidPassword]

getUserManager

[clicks OK]
actionPerformed [passwords

don't match]
showMessageDialog[passwords don't match]

allow user to retype

getOpenedUserConfigDialog

[AccessDenied or
CHART2Exception]

showMessageDialog

[success and
dialog exists]
createdUser

[AccessDenied or
CHART2Exception]

User
Configuration

Dialog

This menu item will be
disabled if the user does
not have rights.

A dialog will be displayed
indicating the cause of the
failure.

Administrator

Figure 174. GUIUserManagementModule:AddUser (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-243 11/20/00

3.13.2.2 GUIUserManagementModule:ConfigureRoles (Sequence Diagram)

This diagram shows how the Role Configuration Dialog is invoked. The adminstrator clicks
on the “Configure Roles” toolbar button. The GUIUserManagementModule then creates the
Role Configuration Dialog. This gets the Organizations from the trader, and gets all of the
roles. It then gets the functional rights for the first role in the list. It displays the roles,
functional rights within a role, and organizations supporting a given functional right. If the
user does not have the ConfigureRoles right, all editing features will be disabled.

delete

setOpened
RoleConfigDialog

[clicked on Close or
closed window]

actionPerformed or
onWindowClosing

setOpened
RoleConfigDialog(null)

[role selection changed]

For more details on
specific actions that
can be performed on roles
(Create Role, Delete Role,
Modify Role),
see the appropriate
sequence diagram.

Administrator

Role
Configuration

Dialog

CosTrading.
Lookup

This will be disabled
if the user does not have
rights.

A dialog will be displayed
indicating the cause of the
failure.

GUIUserManagement
Module UserManager GUI

javax.swing.
JOptionPane

[AccessDenied or
CHART2Exception or

InvalidRole]
showMessageDialog

[no configuration
rights]

disable all editing
features

show

getTrader

getRoleFunctionalRights

getToken

getRoles

[error]
[AccessDenied or

CHART2Exception]
showMessageDialog

refresh the
functional rights

and organizations

query(Organizations)

[clicks on Configure
Roles toolbar button]

actionPerformed
configureRoles

create

getUserManager

[AccessDenied or
CHART2Exception or

InvalidRole]
showMessageDialog

[for the first role,
if any]

getRoleFunctionalRights

Figure 175. GUIUserManagementModule:ConfigureRoles (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-244 11/20/00

3.13.2.3 GUIUserManagementModule:ConfigureUsers (Sequence Diagram)

This diagram shows how the User Configuration Dialog is invoked. The user clicks on the
“Configure Users” button from the toolbar, which will be disabled unless the user has the
rights: ConfigureUsers or ViewUserConfiguration. The GUIUserManagementModule will
create the UserConfigurationDialog, and it will call the UserManager to get the users and
the user roles. If the user has ViewUserConfiguration rights only, all user configuration
functionality in the dialog will be disabled.

A dialog box will be
displayed indicating
the cause of the
failure.

This button will
be disabled if the
user does
not have the rights:
ConfigureUser or
ViewUserConfiguration

TokenManipulator

For more details on
specific actions that
can be performed on users
(Create User, Delete User,
Grant Role, Revoke Role,
and Set User Password),
see the appropriate
sequence diagram.

Administrator

User
Configuration

Dialog

GUIUserManagement
Module UserManager GUI

javax.swing.
JOptionPane

[user selection changed]
getUserRoles

[AccessDenied or
CHART2Exception or

UnknownUser]
showMessageDialog

[clicked on Close
or closed window]
actionPerformed or
onWindowClosing

setOpened
UserConfigDialog(null)

configureUsers

[no configuration
rights]

disable all editing
features

checkAccess

[clicks on Configure
Users toolbar button]

actionPerformed

create

getUserManager

getUsers

[for the first user,
if any]

getUserRoles

getToken

[AccessDenied or
CHART2Exception]

showMessageDialog[error]

[AccessDenied or
CHART2Exception or

UnknownUser]
showMessageDialog

setOpened
UserConfigDialog

show

Figure 176. GUIUserManagementModule:ConfigureUsers (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-245 11/20/00

3.13.2.4 GUIUserManagementModule:CreateRole (Sequence Diagram)

This diagram shows how a role is added to the system. From the Role Configuration
Dialog, the administrator clicks on “New Role”, and the Create Role Dialog is invoked.
When the administrator clicks “OK”, the dialog will call the UserManager to create the
role. If the role is a duplicate, a message box will be displayed and the administrator will be
given a chance to correct the mistake. If the role was successfully created, it will be added
to the Role Configuration Dialog if it is still open.

A dialog box will be
displayed to the user
indicating the cause of
the failure.

This will be disabled
if the user does not have
sufficient rights.

Administrator

CreateRole
Dialog

javax.swing.
JOptionPane

GUIUserManagement
ModuleGUI

createRole

[AccessDenied or
CHART2Exception]

showMessageDialog

[clicks on New Role]
actionPerformed

[AccessDenied or
CHART2Exception]

[AccessDenied or
CHART2Exception]

[DuplicateRole]

[duplicate role]
allow administrator to retype

getOpenedRoleConfigDialog

[clicks OK]
actionPerformed

getToken

getUserManager

create

show

[duplicate role]
showMessageDialog

[success and
dialog exists]
createdRole

add role
to list of

roles

Role
Configuration

Dialog UserManager

Figure 177. GUIUserManagementModule:CreateRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-246 11/20/00

3.13.2.5 GUIUserManagementModule:DeleteRole (Sequence Diagram)

This diagram shows how a role is deleted from the system. From the Role Configuration
Dialog, the administrator selects a role and clicks on “Delete Role”. The dialog handles the
command and calls the UserManager to delete the role. If successful, the role is removed
from the displayed list.

GUIUserManagement
Module GUI UserManager

javax.swing.
JOptionPane

Administrator

Role
Configuration

Dialog

A message dialog will
be displayed to the
administrator showing
the reason for the failure.

This command
will be disabled if
the user does not
have rights.

[success]
remove role

from list

[AccessDenied or
InvalidRole or
RoleInUse or

CHART2Exception]
showMessageDialog

[clicks on
Delete Role]

actionPerformed
getUserManager

getToken

deleteRole

Figure 178. GUIUserManagementModule:DeleteRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-247 11/20/00

3.13.2.6 GUIUserManagementModule:DeleteUser (Sequence Diagram)

This diagram shows how a user is deleted from the system. The administrator selects a user
and clicks on “Delete User” from the User Configuration Dialog. The dialog calls the
UserManager, which deletes the user from the system. If the user is currently logged in, a
message box will be displayed informing the administrator. If the user is successfully
deleted, the user’s name will be removed from the dialog.

[clicked on
Delete User]

actionPerformed
get

getUserManager

getToken

deleteUser

Administrator

User
Configuration

Dialog
GUIUserManagement

Module UserManager GUI

This command
will be disabled
if the user does
not have rights.

A dialog will be displayed
indicating the cause of the
failure.

javax.swing.
JOptionPane

[success]
remove from

list

[UnknownUser,
UserLoggedIn,
AccessDenied,

CHART2Exception]
showMessageDialog

Figure 179. GUIUserManagementModule:DeleteUser (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-248 11/20/00

3.13.2.7 GUIUserManagementModule:Discovery (Sequence Diagram)

This diagram shows how UserManager objects are discovered. The GUI will call the
GUIUserManagementModule to discover objects, and the module will query the trader for
any published UserManager objects. Then it will try to ping each one until one responds,
and if the ping is successful, it will store the UserManager for later use. Once a
UserManager is stored, it will be pinged first before querying from the trader.

GUI

query(User Managers)

[* for each UserManager
until successful ping]

ping

GUIUserManagement
Module

CosTrading.
Lookup UserManager

[UserManager found previously]
ping

[ping successful]

discoverEventChannels

discoverObjects

[successful ping]
store UserManager

This does nothing,
as there is no event channel
for this module.

Figure 180. GUIUserManagementModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-249 11/20/00

3.13.2.8 GUIUserManagementModule:ForceLogout (Sequence Diagram)

This diagram shows how the Force Logout command is performed. The administrator
clicks on the Force Logout button on the toolbar. The GUIUserManagementModule then
creates a ForceLogoutDialog, which displays all of the users from all of the Operations
Centers. When the adminstrator selects a user and hits the Force Logout button on the
dialog, the Operations Center will be called to log the user out.

This happens
on the remote GUI which
is being forced to log out.

UserLoginsDialog

CosTrading.
Lookup

javax.swing.
JOptionPaneLoginSessionGUI

Administrator
TokenManipulator

This command
will be disabled if
the user does not
have rights.

A dialog will be
displayed indicating the
cause of the failure.

GUIUserManagement
Module OperationsCenter

query(Operation Centers)
getToken

[clicked on
Force Logout]

actionPerformed create

[AccessDenied or
LogoutFailure]

showMessageDialog
[success]

remove from
list

[clicks on close]
actionPerformed

[AccessDenied or LogoutFailure]

forceLogout

[AccessDenied]
showMessageDialog

getToken

show

[clicks on Force Logout]
actionPerformed

[* for each login session]
getUsername

[* for each Op Ctr]
getLoginSessions

[no ManageUserLogins
right]

disable login
management
functionality

checkAccess

forceLogout

logout

[AccessDenied]

delete

getOperationsCenter

Figure 181. GUIUserManagementModule:ForceLogout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-250 11/20/00

3.13.2.9 GUIUserManagementModule:GrantRole (Sequence Diagram)

This diagram shows how a role is granted to a user. From the User Configuration dialog,
the administrator clicks on an (unchecked) role checkbox in the role list. The dialog will
mark the role as checked, which assumes a successful operation. Then it will call the
UserManager to grant the role. On failure, a message box will be displayed and the role will
be unchecked.

javax.swing.
JOptionPane

Display a message
box displaying the
cause of the failure.

Administrator

This command will
be disabled if the
user doesn't have rights.

User
Configuration

Dialog
GUIUserManagement

Module

[DuplicateRole or
InvalidRole or
UnknownUser]

showMessageDialog

set role
checkbox

[error]
clear role
checkbox

[clicks on
unchecked role]
actionPerformed

getUserManager

grantRole
getToken

UserManager GUI

Figure 182. GUIUserManagementModule:GrantRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-251 11/20/00

3.13.2.10 GUIUserManagementModule:Login (Sequence Diagram)

This diagram shows the user-specific initialization that is done at login.

UserManager
GUI

GUIUserManagement
Module

getUserProfile

Profile

login

Figure 183. GUIUserManagementModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-252 11/20/00

3.13.2.11 GUIUserManagementModule:ModifyRole (Sequence Diagram)

This diagram shows how roles are modified in the system. From the
RoleConfigurationDialog, the adminstrator clicks on a functional right or an organization to
toggle its presence in the role. The dialog retrieves all of the functional rights from its
components, then sets the functional rights by calling the User Manager. If an error occurs,
the correct functional rights for the role are retrieved from the User Manager, and the dialog
is refreshed based on the correct rights.

GUI
javax.swing.
JOptionPane

Administrator

Role
Configuration

Dialog

This command will
be grayed out if the
user does not have
rights.

A message box will be
displayed indicating the cause
of the failure.

GUIUserManagement
Module UserManager

[clicks on
functional right
or organization]
actionPerformed

[failure]
setRoleFunctionalRIghts

setRoleFunctionalRights

getToken

[failure]
getRoleFunctionalRights

getFunctionalRights

[AccessDenied,
InvalidRole,

InvalidFunctionalRight,
CHART2Exception]

showMessageDialog

Figure 184. GUIUserManagementModule:ModifyRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-253 11/20/00

3.13.2.12 GUIUserManagementModule:RevokeRole (Sequence Diagram)

This diagram shows how a role is revoked from a user. From the User Configuration dialog,
the administrator clicks on a (checked) role checkbox in the role list. The dialog will mark
the role as unchecked, which assumes a successful operation. Then it will call the
UserManager to revoke the role. On failure, a message box will be displayed and the role
will be checked.

revokeRole
[AccessDenied or

InvalidRole or
UnknownUser or

CHART2Exception]
showMessageDialog[error]

set role
checkbox

[clicks on
checked role]

actionPerformed clear role
checkbox

GUI
javax.swing.
JOptionPane

Display a message
box showing the reason
for the failure.

Administrator

User
Configuration

Dialog

This command
will be disabled
if the user does not
have rights.

GUIUserManagement
Module UserManager

getUserManager

getToken

Figure 185. GUIUserManagementModule:RevokeRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-254 11/20/00

3.13.2.13 GUIUserManagementModule:Startup (Sequence Diagram)

This diagram shows the actions performed by the GUIUserManagementModule at startup.

UserManager

GUI

GUIUserManagement
Module

getSystemProfile

Profile

startup

Figure 186. GUIUserManagementModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-255 11/20/00

3.14 GUIUtility

3.14.1 Class Diagrams

3.14.1.1 AudioClasses (Class Diagram)

This diagram shows the classes used to play audio in the GUI.

AudioPushConsumerImpl
11

AudioPushConsumer

AudioPushListener

AudioPushConsumerImpl(AudioPushListener listener) pushAudio(AudioPushConsumerImpl recipient,
 AudioData data) : void
pushAudioProperties(AudioPushConsumerImpl recipient,
 AudioDataFormat format,
 long seconds,
 long size) : void
pushFailure(AudioPushConsumerImpl recipent,
 String error) : void
pushComplete(AudioPushConsumer recipient) : void

Figure 187. AudioClasses (Class Diagram)

3.14.1.1.1 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

3.14.1.1.2 AudioPushConsumerImpl (Class)

This class implements the AudioPushConsumer CORBA interface and delegates the calls to
a AudioPushListener interface.

3.14.1.1.3 AudioPushListener (Class)

This is called by one or more AudioPushConsumerImpls when an audio clip is being
pushed.

R1B2 GUI Detailed Design Rev. 0 3-256 11/20/00

3.14.1.2 FilterClasses (Class Diagram)

This diagram shows the classes that are used to implement Navigator filters in the GUI.
The filters are configurable via the System and User profiles and their purpose is to display
a subset of the available objects in each level of the Navigator tree. Child filters return a
subset of the subset of objects already filtered by the parent.

has children

has parent

0..1

1
has parent

*

1
has children

*1

NavFolderFilter

NavFilterSupporter

DefaultJFrame

Column
Search
Filter
Dialog

Displayed
Columns

Dialog

NavTreeDisplayable DroppableMenuable

NavTreeFiltered
ObjectInstance

NavTreeFilter

ColumnSearchFilter

1 1

*1

1

FilterManager

UniquelyIdentifiable

Basic
Filter

Properties
Dialog

GUIModelObserver

1

GUI
11

NavTypeFilter

m_classToKeep

addFilter(NavTreeFilter parent, NavTreeFilter newFilter)
removeFilter(NavTreeFilter filterToRemove) : void
initializeSystemFilters() : void
initializeUserFilters() : void
cleanupUserFilters() : void
cleanupSystemFilters() : void
-loadFilters(GUIProfile) : NavTreeFilter[]
-buildFilterHierarchy(NavTreeFilter[]) : void
addFilterSupporter(NavFilterSupporter) : void
storeFilterIDs(boolean systemFilters) : void
getDefaultSystemNavFilters() : NavTreeFilter[]
getMenuItemReps() : MenuItemRep[]
handleCommand(ActionEvent event, Component invoker) : boolean

getFilterCreationMenuItems(accessToken) : MenuItemRep[]
createNavFilter(accessToken, menuItemString, NavTreeFilter parent) : boolean
createDefaultSystemNavFilters() : NavTreeFilter[]

cleanup() : voidNavTreeFilter()
filterObjects(Object[]):Object[]
addFilteredObject()
getAllNavProperties() : NavProperty[]
setPropertiesDisplayed(String[]) : void
isSystemFilter() : boolean
getKeyNames() : String[]
getKeyValue(String) : String
setFilterProperties(ProfileProperty[]) : void
getParentID() : Identifier
setParent(NavTreeFilter) : void
addChildFilter(NavTreeFilter) : void
doProperties() : void
setID(Identifier) : void
getClassName() : String
cleanup() : void
setDelegateMenuable(Menuable) : void

m_filterName
m_columnsToShow
m_delegateMenuable

m_columnName
m_searchText

Figure 188. FilterClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-257 11/20/00

3.14.1.2.1 Basic Filter Properties Dialog (Class)

This dialog allows a user with rights to edit the properties of the filter (most notably the
name).

3.14.1.2.2 Column Search Filter Dialog (Class)

This dialog allows the user to edit the filter characteristics for the PropertySearchFilter,
which does a text search for columns displayed in the Navigator.

3.14.1.2.3 Displayed Columns Dialog (Class)

This dialog allows the filter to be edited so that each of the columns displayed on the right-
hand side of the Navigator can be toggled on or off.

3.14.1.2.4 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.14.1.2.5 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.14.1.2.6 ColumnSearchFilter (Class)

This filter will show any objects whose text value listed in the specified navigator column
contains the specified text.

3.14.1.2.7 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.14.1.2.8 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

R1B2 GUI Detailed Design Rev. 0 3-258 11/20/00

3.14.1.2.9 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.14.1.2.10 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.14.1.2.11 NavTreeFilter (Class)

This class serves as a node in the Navigator tree and filters objects to be displayed in the
Navigator. It is an observer to the DataModel so that it can create the
NavTreeFilteredObjectInstance objects for any NavTreeDisplayables that it contains.
(Multiple instances can appear to represent one NavTreeDisplayable object). Filters can be
cascaded to achieve a cumulative filtering effect; that is, a filter appearing under a parent
filter will call the parent filter first to filter the objects, and then it will apply its own
filtering method. The cascading of filters is therefore an “AND” operation. A filter can
either be a system filter or a user-specific filter. System filters can only be modified by
someone with the correct administrative rights, and they can only be added as a child of
other system filters.

3.14.1.2.12 NavTreeFiltered ObjectInstance (Class)

This class represents an instance of an object which is displayed under a filter. The object
being represented is a NavTreeDisplayable which is neither a NavTreeFilter nor a
NavTreeFilteredObjectInstance, and passes through all of the filters from the root up to the
filter containing this representation. There can be more than one instance of the wrapped
object appearing in the Navigator tree at a given time, under different branches. This object
will delegate all GUI functionality to the object that it represents. The filter will watch the
DataModel to determine when objects are eligible to be displayed under the filter, at which
time it will create a NavTreeFilteredObjectInstance and add it to the DataModel. The
NavigatorDriver will then add the instance to the Navigator tree. Other NavTreeFilter
objects and NavTreeFilteredObjectInstances will ignore the new instance by checking its
type.

R1B2 GUI Detailed Design Rev. 0 3-259 11/20/00

3.14.1.2.13 FilterManager (Class)

This class provides functionality for managing the filters in the system. As it deals with the
singleton GUI and the DataModel objects, it too will be a singleton object. The GUI will
create and hold the FilterManager. Filter supporters can be added to the FilterManager to
support the creation of supporter-specific filter types.

3.14.1.2.14 NavFilterSupporter (Class)

This interface is used to allow type-specific filters to be created by external classes such as
the installable modules. It is called to get the menu items for filter creation, as well as to
create the filter when those menu items are clicked on. It is also called to provide default
system filters for “bootstrapping” the system filters in case the system filters are not loaded
from the system profile.

3.14.1.2.15 NavFolderFilter (Class)

This is a placeholder filter/folder whose purpose is to act as a parent for other filters. This
filter will not filter out any objects, so it does not act as a filter at all.

3.14.1.2.16 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.14.1.2.17 NavTypeFilter (Class)

This filter ignores all objects that are not assignable to a given class or interface. Thus, an
interface or base class can be specified and all of the objects implementing the interface or
extending the base class will be included.

R1B2 GUI Detailed Design Rev. 0 3-260 11/20/00

3.14.2 Sequence Diagrams

3.14.2.1 GUIUtility:AddFilter (Sequence Diagram)

This diagram shows how filters are added to the system. To add a filter, the user must click
on an existing folder. The FilterManager will then call all of the filter supporters to get the
filter creation menu items. If the filter being clicked on is a system filter, either system or
user filters may be added as children. If the filter is a user filter, only user filters may be
added as children. The menu items will also be grayed out if the user does not have rights
to add the appropriate type of filter. After the user clicks on a menu item, the FilterManager
calls each of the filter supporters to create a NavTreeFilter. If the supporter recognizes the
menu item string, it will create the appropriate type of NavTreeFilter and open the
properties dialog corresponding to the filter type. When the user clicks “OK”, the
FilterManager will be called to add the filter to the system. This will add the NavTreeFilter
to the DataModel, and it will also persist the filter properties into the system or user profile
(as appropriate) so that the filter can be reconstructed the next time the GUI is started (for
system filters) or the user logs in (for user filters). (See the sequence diagram
UpdateForFilterChange for more details).

R1B2 GUI Detailed Design Rev. 0 3-261 11/20/00

The properties will be stored locally
in a Java properties file until logout
(for user profiles) or shutdown
(for system profiles) and will then be
exported to the database by calling
the Profile's setProperty() method.

The number 12345 is shown
here to represent an identifier string
for the filter.

createIdentifier

create

[user filter]
getUserProfile

GUIProfile

setParent

show
true

[* for each
FilterSupporter
until one returns

true]

true if handled
false if not handled

[enters filter properties and clicks on OK]
actionPerformed

get
getFilterManager

setFilterProperties

"Make array
of one filter"

getKeyNames

getKeyValue

[system filter]
getSystemProfile

setProperty(key,value)

isSystemFilter

[* for each
key]

"Filter Properties Dialog"
doProperties create

NavTreeFilter

The type of filter will depend on
which menu item was clicked on.

handleCommand

createNavFilter

[wrong menu string]
false

[no rights]
false

create

GUI
FilterManager NavFilterSupporter

[user right clicks on
object in navigator]
getMenuItemReps

[selection NOT
consisting of
exactly one

NavTreeFilter]

getFilterCreationMenuItems
[no ConfigureSelf right]

null
"Add any 'User' Filter

Menu Item(s)"
[no ConfigureUsers right]
User Filter MenuItemRep[]

"Add Any 'System' Filter
Menu Item(s)"

MenuItemRep[]
MenuItemRep[]

[* for each
FilterSupporter

Store the class name
and filter ID so that the filter can
instantiated from the database.

getClassName
setProperty("NavFilter.12345.ClassName", className)

Identifier

See the StoreFilterIDs
sequence diagram for details

This will add the filter to the DataModel.
See the BuildFilterHIerarchy
sequence diagram for details.

IdentifierGenerator

buildFilterHierarchy

storeFIlterIDs
(isSystemFilter)

getIdentifierGenerator

addFilter

get

Figure 189. GUIUtility:AddFilter (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-262 11/20/00

3.14.2.2 GUIUtility:BuildFilterHierarchy (Sequence Diagram)

This diagram shows the building of the filter hierarchy in memory, given an existing
hierarchy and some new filters to be added. It may make several passes through the filters
to be added, each time searching for existing parent filters to add the new filters to. It will
set up the parent/child relationship and add the filter to the DataModel. It will also attach
the filter to the DataModel as an observer so that it will know when new
NavTreeFilteredObjectInstance objects are to be added or removed from the filter.

FilterManager
System

DataModelNavTreeFilter
NavFilter
(parent)

buildFilterHierarchy

[parent is null]
getParentID()

[parent is null but parent ID exists]
getObject (parentID)

[parent and parent ID are both null]
objectAdded

[parent exists]
addChildFilter

[found parent
in DataModel]

setParent

[parent exists]
objectAdded

[added to DataModel]
"Remove From

List To Add"

[* for each
NavTreeFilter

"set numAdded = 0"

[* while
filters

to add]

[added to DataModel]
"Increment
numAdded"

[numAdded == 0]

[added to DataModel]
attachObserver

GUI

get
getDataModel

Add as the root of the tree.

getParent()

[not duplicate]
"Add"

Figure 190. GUIUtility:BuildFilterHierarchy (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-263 11/20/00

3.14.2.3 GUIUtility:CleanupSystemFilters (Sequence Diagram)

This diagram shows the cleanup of the system filters at shutdown. The GUI calls the
FilterManager, which gets all of the NavTreeFilter objects from the DataModel and calls
cleanup on each, thereafter removing them from the DataModel. Each filter detaches itself
from the DataModel as an observer. The filter also cleans up any
NavTreeFilteredObjectInstance objects that it contains.

GUI
FilterManager DataModel NavTreeFilter

shutdown

cleanupSystemFilters

[* for each
NavFilter]

NavTreeFiltered
ObjectInstance

cleanup
get

getDataModel

detachObserver
[* for each

NavTreeFilteredObjectInstance]
objectRemoved cleanup

"Remove
Reference To

Object"

"Remove All References"

get
getDataModel getAllObjectsOfType

(NavTreeFilter)

objectRemoved

Figure 191. GUIUtility:CleanupSystemFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-264 11/20/00

3.14.2.4 GUIUtility:CleanupUserFilters (Sequence Diagram)

This diagram shows the cleanup of the user filters at logout. The GUI calls the
FilterManager, which gets all of the NavTreeFilter objects from the DataModel which are
user filters and calls cleanup on each, thereafter removing them from the DataModel. Each
filter detaches itself from the DataModel as an observer. The filter also cleans up any
NavTreeFilteredObjectInstance objects that it contains.

[system filter]
skip

NavTreeFiltered
ObjectInstance

GUI
FilterManager DataModel NavTreeFilter

loggedOut

cleanupUserFilters

get
getDataModel

[* for each
NavFilter]

getAllObjectsOfType
(NavTreeFilter)

cleanup
get

getDataModel
detachObserver

[* for each
NavTreeFilteredObjectInstance]

objectRemoved cleanup
"Remove

Reference To
Object"

"Remove All References"

objectRemoved

Figure 192. GUIUtility:CleanupUserFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-265 11/20/00

3.14.2.5 GUIUtility:InitializeSystemFilters (Sequence Diagram)

This diagram shows the initialization of the system filters at GUI startup. The GUI calls the
FilterManager, which gets the system profiles and attempts to load any existing system
filters from the system profile. If successful, it builds the filter hierarchy and puts the filters
in the DataModel and attaches the filters to observe the DataModel (see the
BuildFilterHierarchy diagram). If no filters are loaded from the system profile, the default
system filters have to be created. The FilterManager creates a root filter (the “CHART2”
filter) and calls each NavFilterSupporter to create their default system filters. If these filters
have a null parent, they are added to the root filter. Then the hierarchy of filters is built and
the filters are added to the DataModel and attached to the DataModel as observers (see the
BuildFilterHierarchy diagram). Then each filter is saved into the system profile so it can be
reconstructed the next time the GUI is restarted.

get

NavTreeFilter

create

[filters returned]

NavFilterSupporter

If no filters were found, the default
system filters must be created.
The root filter is created here.

GUIProfile
(System profile)

getDefaultSystemNavFilters()

NavTreeFilter[]

[parent null]
setParent(root)[* for each

default
filter]

[* for each
NavFilterSupporter]

[added to root]
addChild(child)

"Make Array
Of Default Filters"

buildFilterHierarchy

getKeyNames

setProperty
getKeyValue[* for each

key name]
[* for each

NavTreeFilter]

This will add the filters to the DataModel.
See the sequence diagram BuildFilterHierarchy
for details.

getIdentifierGenerator

GUI
FilterManager

See the sequence
diagram: "LoadFilters"
for details.

See the sequence
diagram: "BuildFilterHierarchy"
for details

initializeSystemFilters

startup

getSystemProfile
loadNavFilters

[filters returned]
buildFilterHierarchy

NavTreeFilter[]

See the sequence diagram
StoreFilterIDs for details

NavFolderFilter IdentifierGenerator

Identifier

The other filters will be
generated here. The creator must
make sure that they contain an
Identifier.

storeFilterIDs(true)

createIdentifier
create

Figure 193. GUIUtility:InitializeSystemFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-266 11/20/00

3.14.2.6 GUIUtility:InitializeUserFilters (Sequence Diagram)

This diagram shows the creation of the user-specific Navigator filters at login. The GUI
calls the FilterManager to load the user filters. The FilterManager then loads the filters (see
the LoadFilters diagram) and establishes the filter hierarchy for the new filters, in addition
to adding them to the DataModel and attaching them to the DataModel as observers (see the
BuildFilterHierarchy diagram).

GUI
FilterManager

See the sequence
diagram: "LoadFilters"
for details.

initializeUserFilters

getUserProfile

loadNavFilters

buildFilterHierarchy

See the sequence
diagram: "BuildFilterHierarchy"
for details

loggedIn

Figure 194. GUIUtility:InitializeUserFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-267 11/20/00

3.14.2.7 GUIUtility:LoadFilters (Sequence Diagram)

This diagram shows how the filters are loaded, given a GUIProfile object (which can be
either a system profile or a user profile). First it queries the filter IDs, which are stored as a
delimited sequence of IDs within a given property. Then it separates the IDs. For each filter
ID, it gets the class name for the filter and then creates a new instance of that class. Then it
asks the new filter object to return the keys (properties) that it supports. Then it queries the
profile for the value of each property, and after all of the properties are read, it sets the
properties into the filter object.

The number 12345 is shown
here to represent an identifier string
for the filter.

setID

The hierarchy of
filters will be constructed
at a later time.

NavTreeFilter[]

getProperty("NavTreeFilter.12345.ParentID")

GUI

FilterManager
GUIUserManagement

Module GUIProfile Class

NavTreeFilter

The type of filter created
will actually be a specific class
which depends on the class
name.

loadFilters(GUIProfile)

These are examples of
what property keys
might be used. Specific
filter types would use
their own key names.

[not found]

"Break Up Value
Into Identifier Strings

and Convert To
Identifiers"

"Construct Key To
Get Class Name

Using Identifier String"

getProperty("NavTreeFilterIDs")

getProperty("NavTreeFilter.12345.ClassName")

forName(className)

Filter Class Name

newInstance
create

NavTreeFilter

getKeyNames

"Construct Key To
Get Filter-Specific

Data Using Filter ID
and Key Name"

getProperty("NavTreeFilter.12345.Name")

setFilterProperties(ProfileProperty[])

[* for each
key name]

[* for each
filter ID string

found]

DataModel

Figure 195. GUIUtility:LoadFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-268 11/20/00

3.14.2.8 GUIUtility:ModifyFilterProperties (Sequence Diagram)

This diagram shows how a filter is modified. The user right clicks on the “Properties” menu
item, from the filter’s context menu. The filter calls doProperties() on itself, which invokes
the appropriate filter properties dialog corresponding to the specific type of filter. When the
user clicks “OK”, the dialog will set the properties into the filter. The filter will then get the
GUIProfile object (either the system profile or user profile, depending on which type of
filter it is) and will save the properties into the GUIProfile. (See the sequence diagram
UpdateForFilterChange for more details).

The filter properties will be stored in a
Java Properties object on the local drive
until logout (for user properties) or
shutdown (for system properties), when
the setProfileProperties() method will be
called on the appropriate Profile object to
persist them to the database.

The DataModel will update
the observers of the changed
filter properties.

This menu item and dialog
will be disabled if the user does
not have rights to view or edit the
filter.

DataModel

getDataModel
objectUpdated

User

closeWindow

NavTreeFilter

"Filter
Properties

Dialog"

The type of filter
and dialog depend
on which type of filter
was clicked on.

ProfileProperty

GUI GUIProfile Profile

[clicks on "Properties"]
actionPerformed

doProperties

create

show

[edits properties and clicks OK]
actionPerformed

setFilterProperties

[* for each property]
create

get

[system filter]
getSystemProfile

[user filter]
getUserProfile

setProperties

[error]
GUIException[error]

GUIException
[error]

"Display Error"

[error]

Figure 196. GUIUtility:ModifyFilterProperties (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-269 11/20/00

3.14.2.9 GUIUtility:RemoveFilter (Sequence Diagram)

This diagram shows how a filter is removed from the system. The user clicks on the
“Remove Filter” menu item from the filter’s context menu item. The FilterManager then
gets the appropriate GUIProfile (either system or user), and after asking the filter for all of
the key names which it supports, sets all of the property values to null in the GUIProfile.
The GUIProfile will then delete the properties. Finally, the classname will be deleted in the
profile and the filter IDs will be stored (after removing the filter from the DataModel). (See
the UpdateForFilterChange sequence diagram for more details about the cleanup of the
filter).

The appropriate properties in the
locally-cached Java properties
file must be deleted also so that
they will not be added to the database
when the properties files are
persisted at logout or shutdown.

The filter is attached to the
DataModel as an observer and
will be notified by the DataModel
to clean itself up before being
removed. See the sequence diagram
UpdateForFilterChange for details.

get

[no rights]
AccessDenied

[other error]
CHART2Exception[error]

GUIException

get
getToken deleteProfileProperty

[no rights]
AccessDenied

[other error]
CHART2Exception[error]

GUIException

setProperty("NavTreeFilter.12345.ClassName", null)

[* for each
key name]

Profile

User
NavTreeFilter

This menu item will be
disabled if the user does
not have rights to remove
the filter.

FilterManager GUI GUIProfileDataModel

Store the new set of filter
IDs (which does not contain
the ID of the removed filter).
See the StoreFilterIDs
sequence diagram for
details.

[clicks on "Remove Filter"]
actionPerformed

get
getFilterManager

removeFilter

getKeyNames

isSystemFilter

setProperty(keyName, null)

[system filter]
getSystemProfile

[user filter]
getUserProfile

get

getDataModel

objectRemoved

storeFilterIDs

getToken
deleteProfileProperty

Remove the class name
used for instantiation

Figure 197. GUIUtility:RemoveFilter (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-270 11/20/00

3.14.2.10 GUIUtility:StoreFilterIDs (Sequence Diagram)

This diagram shows how the filter IDs are stored in a GUIProfile. Storing the IDs enables
the filters to be reconstructed at startup (for system filters) or login (for user filters). The
FilterManager gets all of the NavTreeFilter objects from the DataModel, and appends the
string IDs of those filters which have the same system/user flag as was requested. The
FilterManager then gets the appropriate GUIProfile and saves the concatenated value into it.

getAllObjectsOfType(NavTreeFilter)

isSystemFilter

[system flag matches parameter]
getID

[system flag matches parameter]
toString

[system filter flag
matches parameter]
"Append ID string to
cumulative ID string"

[* for next
filter]

[useSystemFilters
is true]

getSystemProfile

[useSystemFilters
is false]

getUserProfile

setProperty("NavFilterIDs", "<ID String>")

[error]
GUIException

getToken
setProfileProperties

[no rights]
AccessDenied

[other error]
CHART2Exception[error]

GUIException

get
getDataModel

System
FilterManager GUI DataModel NavTreeFilter Identifier GUIProfile Profile

storeFilterIDs
(useSystemFilters)

Figure 198. GUIUtility:StoreFilterIDs (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-271 11/20/00

3.14.2.11 GUIUtility:UpdateForFilterChange (Sequence Diagram)

This diagram shows the processing that occurs when a filter has been added, modified, or
removed from the DataModel. The filter is an observer of the DataModel, so it also catches
the updates for any changes to itself. If the filter was added or changed, the filter gets all of
the NavTreeDisplayable objects from the DataModel and filters them. The root filter is
called first, then each ancestor down to this filter. Any NavTreeObjectInstances that were
contained in the filter, but whose objects they represent are not in the newly filtered set, are
removed. Any NavTreeDisplayable objects in the newly filtered set but not currently
contained in the filter are wrapped with NavTreeFilteredObjectInstance objects, which then
are added to the DataModel and the filter. If the filter was removed from the DataModel,
then all of the NavTreeFilteredObjectInstance objects are removed from the filter and the
DataModel.

R1B2 GUI Detailed Design Rev. 0 3-272 11/20/00

DataModel

NavTreeFilter
NavTreeFilter

(parent) GUI DataModel

This will recursively call the parent
to filter the objects until the root is called.
The root will filter the objects first, then
the root's child, etc..

NavTreeFiltered
ObjectInstance

update

[this NavTreeFilter was
added or updated via

the DataModel]
refreshObjects

[parent not null]
filterObjects

get
getDataModel

getAllObjectsOfType(NavTreeDisplayable)

"Filter The Objects"
Object[]

"Filter The Objects"

[parent not null]
filterObjects

[Object in set of newly-filtered set but nav instance not contained in filter]
create[* for each newly-filtered object

which is a NavTreeDisplayable
but is not a NavTreeFilter or
NavTreeFilteredObjectInstance]

[this NavTreeFilter was removed
from the DataModel]

detachObserver

cleanup
"Remove References"

cleanup

objectRemoved

"Remove References"

[filter removed]
[* for each

NavTreeFilteredObjectInstance
contained in filter] "Remove

NavTreeFilteredObjectInstance
From Collection"

[filter removed]
"Remove All References"

The resulting array should now
contain only those Objects which
pass the filter(s).

[created NavTreeFilteredObjectInstance]
objectAdded

[created nav instance]
"Add

NavTreeFilteredObjectInstance
To Collection"

[nav instance contained in filter but Object not in newly-filtered set]
objectRemoved

[removed nav instance]
"Remove

NavTreeFilteredObjectInstance
From Collection"

(see note)

[* for each
NavTreeFilteredObjectInstance

contained in filter]

Figure 199. GUIUtility:UpdateForFilterChange (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-273 11/20/00

3.14.2.12 GUIUtility:UpdateForObjectChanges (Sequence Diagram)

This diagram shows the processing that occurs when objects have been added, modified, or
removed from the DataModel. The filter is an observer of the DataModel, so it catches the
updates for any changes to objects. It takes all of the objects that were added or changed
and filters them. The root filter is called first, then each ancestor down to this filter. Any
NavTreeObjectInstances that were contained in the filter, but whose objects they represent
are not in the newly-filtered set, are removed. Any NavTreeDisplayable objects in the
newly-filtered set but not currently contained in the filter are wrapped with
NavTreeFilteredObjectInstance objects, which then are added to the DataModel and the
filter. If the filter was removed from the DataModel, then all of the
NavTreeFilteredObjectInstance objects are removed from the filter and the DataModel. For
any objects that were removed from the DataModel, if they have
NavTreeFilteredObjectInstance objects wrapping them, these wrappers are removed from
the DataModel and from the filter.

cleanup
"Remove References"

[removed nav instance from DataModel]
cleanup

"Remove References"

[* for each newly-filtered object
which is a NavTreeDisplayable
but is not a NavTreeFilter or
NavTreeFilteredObjectInstance]

DataModel
NavTreeFilter

NavTreeFilter
(parent)

This will recursively call the parent
to filter the objects until the root is called.
The root will filter the Objects first, then the
root's child, etc..

GUI DataModel
NavTreeFiltered
ObjectInstance

update

[* for each Object
added or changed
via the DataModel]

"Add To Array To Filter"

[parent not null]
filterObjects

[parent not null]
filterObjects

"Filter Objects"

Object[]

"Filter Objects"

getDataModel
get

[nav instance contained in filter but Object not in newly-filtered set]
objectRemoved

[removed nav instancel]
"Remove

NavTreeFilteredObjectInstance
 From Collection"

[* for each
NavTreeFilteredObjectInstance

contained in filter]

[Object in newly-filtered set but nav instance not contained in filter]
create

[created NavTreeFilteredObjectInstance]
objectAdded

[created nav instance]
"Add

NavTreeFilteredObjectInstance
To Collection"

The resulting array should now
contain only those Objects which
pass the filter(s).

(see note)

[* for each Object
that was removed
from DataModel]

[corresponding nav instance in filter]
objectRemoved

"Remove
NavTreeFilteredObjectInstance

From Collection"

Figure 200. GUIUtility:UpdateForObjectChanges (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-274 11/20/00

3.15 HARUtility

3.15.1 Class Diagrams

3.15.1.1 HARUtility (Class Diagram)

This class diagram shows classes related to the HAR that are used by both the GUI and the
server. Most (if not all) of these classes are implementations of value type classes defined in
the system interfaces (IDL).

1

1

java.util.LinkedList

2

DBConnectionManager

1

1

HARAudioClipDB

1 1

1

1 validates
message
content
using

1

1..3

Chart2HARStatusImpl

Chart2HARStatus Chart2HARConfiguration

Chart2HARConfigurationImpl HARRPIDataImpl

HARRPIData HARPlanItemData

HARMessageImpl

HARMessage DictionaryWrapper

HARMessageClip

HARMessageAudioClip

HARPlanItemDataImpl

AudioPushConsumer
1 1

HARMessageTextClip HARMessagePrestoredClip

HARMessageAudioClipImpl HARMessageTextClipImpl HARMessagePrestoredClipImpl

java.lang.ThreadGroup

AudioPushThreadManager
AudioPushThread

java.lang.Runnable

* 1

HARMessageAudioDataClip

HARMessageAudioDataClipImpl

HARAudioClipManager

AudioClipStreamer

1

getConnection():java.sql.Connection
releaseConnection();
shutdown();

AudioPushThreadManager(int numPushThreads)
pushAduio(AudioPushConsumer consumer,
 InputStream stream,
 AudioDataFormat format,
 long chunkSize)
releaseAudioPushThread()
-getAudioPushThread()

m_freeThreads
m_inUseThreads

setClipInfo
-clearClipInfo

m_consumer
m_format
m_stream
m_inUse
m_chunkSize

HARAudioClipManager(byte[] identifier,
 IdentifierGenerator,
 DBConnectionManager):HARAudioClipManager
storeAudioDataClip(HARMessageAudioDataClip clip,
 byte[] ownerID):HARMessageAudioClip
removeAudioDataClip(byte[] clipID, byte[] ownerID)

byte[] m_id

getFirst():Object
add(Object)

getDescription(byte[] clipID):string
setDescription(byte[] clipID, byte[] ownerID, string desc)
getVoiceSeconds(byte[] clipID):long
storeAudioData(byte[] clipID,
 byte[] ownerID,
 string desc,
 long seconds,
 HARMessageAudioDataClip clip)
getAudioData(byte[] clipID):HARMessageAudioDataClip
removeAudioClip(byte[] clipID, byte[] ownerID)

DBConnectionManager m_db

run()

Figure 201. HARUtility (Class Diagram)

3.15.1.1.1 AudioClipStreamer (Class)

This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface

3.15.1.1.2 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

R1B2 GUI Detailed Design Rev. 0 3-275 11/20/00

3.15.1.1.3 AudioPushThread (Class)

This class is a thread that is used to push audio clip information to an AudioPushConsumer.

3.15.1.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to
push audio clip information back to the client. It provides the functionality to manage
access to the AudioPushThreads.

3.15.1.1.5 Chart2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART II specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

3.15.1.1.6 Chart2HARConfigurationImpl (Class)

This class is a concrete implementation of the Chart2HARConfiguration abstract class
generated from IDL.

3.15.1.1.7 Chart2HARStatus (Class)

This class contains status information for a Chart2HAR object. This information is specific
to Chart II processing and extends beyond the status related to typical HAR device control.

3.15.1.1.8 Chart2HARStatusImpl (Class)

This class is a concrete implementation of the Chart2HARStatus abstract class generated
from IDL.

3.15.1.1.9 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two seperate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

R1B2 GUI Detailed Design Rev. 0 3-276 11/20/00

3.15.1.1.10 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerance by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.15.1.1.11 HARAudioClipDB (Class)

This class provides access to the database for the HARAudioClipManager. It provides a
means to store and retrieve recorded voice to/from the database.

3.15.1.1.12 HARAudioClipManager (Class)

This class provides the implementation of the AudioStreamer interface and is capable of
streaming recorded audio clips that have been previously stored. When requested to stream
an audio clip, this class pulls the audio data from its persistent store pushes the audio data to
the given AudioPushConsumer in a worker thread. This class also allows newly recorded
audio clips to be added to the system. When a clip is added to the system it is assigned a
unique ID and a HARMessageAudioClip is created as a thin wrapper to provide access to
the audio data. When new audio clips are added to the system, the ID of the owner is passed
to facilitate clean-up of the clip when it is no longer needed.

3.15.1.1.13 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.15.1.1.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is

R1B2 GUI Detailed Design Rev. 0 3-277 11/20/00

used to stream the actual voice data.

3.15.1.1.15 HARMessageAudioClipImpl (Class)

This class defines HARMessageAudioClip as defined in the IDL. Refer to
HARMessageAudioClip for details.

3.15.1.1.16 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.15.1.1.17 HARMessageAudioDataClipImpl (Class)

This class implements the HARMessageAudioDataClip as defined in the IDL. Refer to
HARMessageAudioDataClip for details.

3.15.1.1.18 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.15.1.1.19 HARMessageImpl (Class)

This class is a concrete implementation of the HARMessage abstract class generated from
IDL.

3.15.1.1.20 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.15.1.1.21 HARMessagePrestoredClipImpl (Class)

This class implements HARMessagePrestoredClip as defined in IDL. Refer to
HARMessagePrestoredClip for details.

3.15.1.1.22 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

R1B2 GUI Detailed Design Rev. 0 3-278 11/20/00

3.15.1.1.23 HARMessageTextClipImpl (Class)

This class implements HARMessageTextClip as defined in the IDL. Refer to
HARMessageTextClip for details.

3.15.1.1.24 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.15.1.1.25 HARPlanItemDataImpl (Class)

This class is a concrete implementation of the HARPlanItemData abstract class generated
from IDL.

3.15.1.1.26 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.15.1.1.27 HARRPIDataImpl (Class)

This class is a concrete implementation of the HARRPIData abstract class generated from
IDL.

3.15.1.1.28 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.15.1.1.29 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

3.15.1.1.30 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

R1B2 GUI Detailed Design Rev. 0 3-279 11/20/00

3.15.2 Sequence Diagrams

3.15.2.1 HARUtility:PushAudio (Sequence Diagram)

This diagram shows how audio data is pushed back to the client. The
AudioPushThreadManager manages a pool of threads that can be used to push audio data
back to the clients. When a request is made to push audio, the AudioPushThreadManager
looks in the thread list for a free thread. If all the threads are being used, the request waits
until a thread becomes available. Once a thread becomes available, the thread is notified of
the clip by setting the clip data and the thread starts pushing the audio data by first pushing
the audio properties. Then, the thread starts to push the audio data in chunks of the size
requested by the client. If the pushing operation fails, an error is passed to the consumer. At
the completion of pushing, the thread clears the clip data and informs the
AudioPushThreadManager to free the thread. The AudioPushThreadManager in turn frees
the thread and notifies any waiting request.

size

m_freeThreads m_inUseThreads

getFirst

[if a free thread
 is not available]

wait

AudioPushThread

add(AudioPushThread)

remove(AudioPushThread)

remove(AudioPushThread)

add(AudioPushThread)

wait

notify

Clear Clip Info

releaseAudioPushThread

Client

AudioPushThreadGroup AudioPushThread AudioPushConsumer

AudioPushThread
pushes the clip information
asynchronously.

Audio data returned begins and
ends on frame boundaries depending
upon the audio format. So, the size of
audio data pushed may be less than the
chunk size requested.

pushAudioProperties

[while more audio data
&

no error pushing data] pushAudio

[error pushing data]
pushFailure

setClipInfo

[while not
shutdown]

notify

pushAudioClipInfo

Figure 202. HARUtility:PushAudio (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-280 11/20/00

3.15.2.2 HARUtility:StoreAudioClip (Sequence Diagram)

When a Chart2HARImpl or the MessageLibraryDB object have been passed a HAR
message that contains a HARMessageAudioDataClip, the HARAudioClipManager is called
to store the voice data and create a thin wrapper object that represents the voice data. This
thin wrapper is passed around the system instead of the voice data itself. The thin wrapper
contains a reference to the HARAudioClipManager which will push the voice data to any
holders of the thin wrapper that request the actual voice data.

createIdentifier

Identifier

storeAudioClip

create

[failure]
CHART2Exception

HARMessageAudioClip

HARMessageAudioClip

HARAudioClipManager
stores itself as the streamer
for the audio data in the
audio clip.

Chart2HARImpl
OR

MessageLibraryDB

HARAudioClipManager IdentifierGenerator HARAudioClipDB

storeAudioDataClip

Figure 203. HARUtility:StoreAudioClip (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-281 11/20/00

3.16 Java Classes

3.16.1 Class Diagrams

3.16.1.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming
language that are used in class and sequence diagrams for other packages within this
design.

java.util.Timer

java.util.TimerTask

javax.sound.sampled.AudioSystemjava.io.File java.io.InputStream

java.lang.ThreadGroup

java.util.TreeMap

java.sql.Connectionjava.lang.Thread java.sql.Statement

java.awt.Component java.awt.event.ItemListener

javax.swing.JTabbedPane

javax.swing.table.
AbstractTableModel

javax.swing.tree.
MutableTreeNode

javax.swing.tree.
DefaultTreeModel

java.util.Hashtable java.util.Properties

java.util.LinkedList

java.awt.event.KeyListenerjava.awt.event.ActionListenerjava.lang.Runnable

java.lang.Object

javax.swing.JOptionPane

javax.swing.JFrame

schedule
cancel

run

executeQuery(string query):ResultSet
executeUpdate(string):int

createStatement():Statement

put(Object key, Object value)
get(Object key):value

getFirst():Object
add(Object)

start()
interrupt()
setDaemon(boolean)
run():void

getProperty()
setProperty()

run()

showMessageDialog
showOptionDialog

show

keyPressed
keyReleased
keyTyped

hashCode()
equals()

actionPerformed()

Figure 204. JavaClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-282 11/20/00

3.16.1.1.1 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and
panels.

3.16.1.1.2 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.16.1.1.3 java.awt.event.ItemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list
item or combo box item.

3.16.1.1.4 java.awt.event.KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.16.1.1.5 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.16.1.1.6 java.io.InputStream (Class)

Java class that represents a input stream of bytes.

3.16.1.1.7 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

3.16.1.1.8 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.16.1.1.9 java.lang.Thread (Class)

This class represents a java thread of execution.

3.16.1.1.10 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

R1B2 GUI Detailed Design Rev. 0 3-283 11/20/00

3.16.1.1.11 java.sql.Connection (Class)

This class represents a connection (session) with a specific database.

3.16.1.1.12 java.sql.Statement (Class)

Java class used for executing a static SQL statement and obtaining the results produced by
it.

3.16.1.1.13 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.16.1.1.14 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

3.16.1.1.15 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.16.1.1.16 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.16.1.1.17 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.16.1.1.18 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the
map will be in ascending key order, sorted according to the natural order for the key’s class,
or by the comparator provided at creation time, depending on which constructor is used.

3.16.1.1.19 javax.sound.sampled.AudioSystem (Class)

The AudioSystem class acts as the entry point to the sampled-audio system resources. This
class lets you query and access the mixers that are installed on the system.

R1B2 GUI Detailed Design Rev. 0 3-284 11/20/00

3.16.1.1.20 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.16.1.1.21 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

3.16.1.1.22 javax.swing.JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a
certain page.

3.16.1.1.23 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure
will be used to supply a JTable with data.

3.16.1.1.24 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

3.16.1.1.25 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

R1B2 GUI Detailed Design Rev. 0 3-285 11/20/00

3.17 Navigator

3.17.1 Class Diagrams

3.17.1.1 NavigatorClasses (Class Diagram)

11

NavList

ModelObserver

javax.swing.tree.
DefaultTreeModel

1

1

1

1

NavTree

1

GUI
1

1 1

Navigator
NavigatorSupporter

Navigable

NavTreeDisplayable

NavTreeModel
1

javax.swing.tree.
MutableTreeNode

javax.swing.table.
AbstractTableModel

NavTableModel

1

java.util.
Hashtable

*

1

1

1

* 1

*

1

1

1

1

*

GUINavigatorDriver

NavListDisplayable

openNavigator(NavigatorSupporter) : Navigator
addNavigables(navigables)
updateNavigables(navigables)
removeNavigables(navigables)
getNavList

getNavigables() : Navigable []
makeMenu(selectedNavigables) : JMenu
dragOver(selectedNavigables,DropTargetDragEvent)
drop(selectedNavigables,DropTargetDropEvent)
navigatorClosing(Navigator)

getImage()
getDesc()
allowSetDesc()
setDesc()

addNavigables
updateNavigables
removeNavigables
getNavTreeDisplayable
setNavTreeDisplayable

m_navTreeDisplayable

getPropertyValue(property) : String
comparePropertyValues(property, val1, val2) : int

addNavigables
updateNavigables
removeNavigables
setSelectedNavTreeDisplayable
-removeTreeNode

getNavParent() : NavTreeDisplayable
containsChildNavigable(Navigable) : boolean
getChildNavigables() : Navigable[]
getNavPropertyList() : String []

Figure 205. NavigatorClasses (Class Diagram)

3.17.1.1.1 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.17.1.1.2 GUINavigatorDriver (Class)

This class handles all of the Navigator-specific functionality for the GUI.

R1B2 GUI Detailed Design Rev. 0 3-286 11/20/00

3.17.1.1.3 java.util. Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.17.1.1.4 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure
will be used to supply a JTable with data.

3.17.1.1.5 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

3.17.1.1.6 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

3.17.1.1.7 ModelObserver (Class)

This interface must be implemented by any object that would like to attach to the
DataModel as an observer and get updated as system objects are added, deleted or changed.

3.17.1.1.8 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the
left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

3.17.1.1.9 Navigator (Class)

This class represents one instance of the Navigator window. It supplies methods for
opening the Navigator window and for maintaining the collection of Navigables after the
Navigator is open.

3.17.1.1.10 NavigatorSupporter (Class)

This interface must be implemented by any subsystem that supports invoking the
Navigator. It must be able to supply the Navigable objects, and also can support user
interaction with the selected Navigable objects through menus and drag/drop.

R1B2 GUI Detailed Design Rev. 0 3-287 11/20/00

3.17.1.1.11 NavList (Class)

This class represents the right hand side of the Navigator window (the list or report). It
contains functionality for changing the NavTreeDisplayable to refill the list, and also for
maintaining the Navigables in the list after the Navigables belonging to the
NavTreeDisplayable are already displayed.

3.17.1.1.12 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.17.1.1.13 NavTableModel (Class)

This class will serve as the data structure for the right hand side of the Navigator, and will
be the foundation of the JTable that will display the data stored in the model.

3.17.1.1.14 NavTree (Class)

This class represents the left-hand side of the Navigator window - the tree view. It contains
functionality for maintaining the NavTreeDisplayable objects that are in the tree.

3.17.1.1.15 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.17.1.1.16 NavTreeModel (Class)

This class will provide the data structure that will support the tree structure on the left hand
side of the Navigator.

R1B2 GUI Detailed Design Rev. 0 3-288 11/20/00

3.17.2 Sequence Diagrams

3.17.2.1 Navigator:AddNavigables (Sequence Diagram)

This diagram shows what happens in the Navigator when Navigable objects are added.
First, the Navigables are passed to the NavTree. The NavTree will then build a list of any
NavTreeDisplayables to add. For each element in the list, it checks the hash table to
determine whether the parent (if any) is already in the tree. If the parent is in the tree or
there is no parent, a new MutableTreeNode will be created and inserted into the
DefaultTreeModel, and the NavTreeDisplayable will be put into the hash table. Each
NavTreeDisplayable that is added to the tree is removed from the list to be inserted. As
long as one or more nodes were inserted during a given pass through the list, another pass is
attempted (for the next level of the tree). Then the Navigables are added to the NavList.
This will check each Navigable to see if it is a NavListDisplayable and if its parent is the
selected NavTreeDisplayable. If both are true, the NavListDisplayable will be added to the
list.

Navigator

addNavigables

addNavigables

[NavTreeDisplayable has parent]
get

[inserted MutableTreeNode]
put

[NavTreeDisplayable does not have parent
or parent already in tree]

create[list is not
empty and
at least one

node was inserted
on this pass]

repeat

[* for next
NavTreeDisplayable

in list]
repeat

[is child]
insert into list

turn off
redraw

[* for each property]
getPropertyValue

[* for next Navigable
implementing

NavListDisplayable]
repeat

[inserted MutableTreeNode]
remove NavTreeDisplayable from

list to be inserted

getParent

[created MutableTreeNode]
insertNodeInto

NavList NavListDisplayable

addNavigables

containsChildNavigable

getNavTreeDisplayable

NavTreeDisplayable javax.swing.tree.
DefaultTreeModel

java.util.
HashtableNavigable

Adder

[NavListDisplayables
added to list]

repaint window

turn redraw on

NavTree javax.swing.tree.
MutableTreeNode

A hash table of
MutableTreeNodes
which have already
been inserted into
the tree.

[* for each Navigable
implementing NavTreeDisplayable]

add to list to be inserted

Figure 206. Navigator:AddNavigables (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-289 11/20/00

3.17.2.2 Navigator:Initialize (Sequence Diagram)

This diagram shows how the Navigator is initialized. The openNavigator method will create
a new Navigator window and the tree and list views. The Navigator will then query the
NavigatorSupporter to provide it with all Navigable objects. The Navigables are added to
the NavTree (see the Navigator:AddNavigables diagram for details). Then the root node is
set as the selected node in the NavTree. See the Navigator:TreeSelectionChange sequence
diagram for details on the effects of this.

NavList

Navigator

Navigator

See the AddNavigables
sequence diagram for
more details.

create

addNavigables

openNavigator

setSelectedNavTreeDisplayable

getNavigables

Navigator
Opener

create

See TreeSelectionChange
sequence diagram
for more details.

Navigator
Supporter

NavTree

Figure 207. Navigator:Initialize (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-290 11/20/00

3.17.2.3 Navigator:RemoveNavigables (Sequence Diagram)

This diagram shows how Navigables are removed from the Navigator. Each
NavTreeDisplayable to removed causes removeTreeNode to be called. This is a recursive
call, which calls removeTreeNode first on each of its children. The children are removed
first so that every tree node below the current node is cleaned out of the hash table. If the
NavList is displaying the children of the node that is being destroyed, then we set the
NavTreeDisplayable in the list to the parent. Then the NavTreeDisplayable is removed from
the hash table and also from its parent. The Navigables to be removed are then passed to the
NavList, which removes and NavListDisplayables in the list matching any of the
Navigables to be removed.

Navigator

removeTreeNode
does this...

This is a recursive call.
The child nodes are
removed first to allow them
to be removed from the
hash table.

[current tree node in NavList == node to be removed]
setNavTreeDisplayable(parent)

removeNavigables

NavTreeDisplayable

turn off redraw

find

getChildNavigables

For each Navigable
being removed

NavTree

getNavTreeDisplayable

[found]
remove

removeNavigables

java.util.
Hashtable

removeNavigables

[* for each Navigable
implementing

NavTreeDisplayable]
removeTreeNode

javax.swing.tree.
DefaultTreeModel NavList

remove

[node found]
removeNodeFromParent

getNavTreeDisplayable
getNavList

[current node in NavList ==
node to be removed]

getParent

Navigable
Remover

[* for each child
implementing NavTreeDisplayable]

removeTreeNode

Figure 208. Navigator:RemoveNavigables (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-291 11/20/00

3.17.2.4 Navigator:TreeSelectionChange (Sequence Diagram)

This diagram shows what happens when a tree selection change takes place. The NavTree
calls the NavList and sets the NavTreeDisplayable. This will cause all objects to be
removed from the NavList. The NavList will ask the new NavTreeDisplayable for its
properties (columns). Then the NavList will ask the NavTreeDisplayable for its children,
which will all be inserted into the list. Each item inserted will be called for each
column/property to supply the property value.

getPropertyList

[* for each property]
insert column

Java
Swing

or other
Selection
Changer

NavTree Navigator NavList NavTreeDisplayable

selection change
notification

or
setSelectedNavTreeDisplayable getNavList

setNavTreeDisplayable

getChildNavigables

[* for each
NavListDisplayable]

insert into list

remove all
NavListDisplayables

turn off
redraw

turn on redraw

repaint window

[* for each NavListDisplayable]
[* for each property]
getPropertyValue

NavListDisplayable

Figure 209. Navigator:TreeSelectionChange (Sequence Diagram)
[DCE:417]

R1B2 GUI Detailed Design Rev. 0 3-292 11/20/00

3.18 Shazam Utility

3.18.1 Class Diagrams

3.18.1.1 SHAZAMUtility (Class Diagram)

This diagram shows SHAZAM related classes that are shared between the server and the
GUI.

SHAZAMStatus SHAZAMConfiguration

SHAZAMStatusImpl SHAZAMConfigurationImpl

factory createSHAZAMStatus():SHAZAMStatus

boolean m_activated
CommunicationMode m_commMode
Identifier m_controllingOpCtrID
string m_controllingOpCtrName
NetworkConnectionSite m_networkConnectionSite

factory createSHAZAMConfiguration():SHAZAMConfiguration

string m_name;
string m_location
string m_phoneNumber
Direction m_direction
HAR m_har
long m_refreshIntervalMins

Figure 210. SHAZAMUtility (Class Diagram)

3.18.1.1.1 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.18.1.1.2 SHAZAMConfigurationImpl (Class)

This class provides an implementation of the SHAZAMConfiguration valuetype as defined
in the IDL. This class provides access to values relating to the configuration of a
SHAZAM.

3.18.1.1.3 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.18.1.1.4 SHAZAMStatusImpl (Class)

This class implements the SHAZAMStatus valuetype as defined in the IDL. It provides
access to values relating to the current status of a SHAZAM.

R1B2 GUI Detailed Design Rev. 0 3-293 11/20/00

3.19 System Interfaces

3.19.1 Class Diagrams

3.19.1.1 AudioCommon (Class Diagram)

This class diagram shows the classes relating to Audio.

*1

1

1

AudioPushConsumer

TTSPriority

AudioDataFormat

AudioEncoding

UnsupportedAudioFormat AudioClipNotFound

TTSConverter

UniquelyIdentifiable

AudioData
1 *

AudioClipStreamer

*

1

*

1

*

1

TextEmbeddedTag

replaces

*

1

*

1

1

1

pushAudio(AudioData data):void
pushAudioProperties(AudioDataFormat format,
 long seconds,
 long size):void
pushFailure(string errMsg):void

USER
SYSTEM

AudioEncoding m_encoding;
float m_sampleRate;
long m_sampleSizeInBits;
long m_channels;
long m_frameSize;
float m_frameRate;
boolean m_bigEndian;

PCM_SIGNED
PCM_UNSIGNED
A_LAW
U_LAW

AudioDataFormatList supportedFormats; string reason;

getSupportedFormats(void):AudioDataFormatList;
convertTextToSpeech(string text,
 AudioDataFormat format,
 long maxChunkSize,
 TTSPriority priority,
 AudioPushConsumer consumer)
getVoiceLength(string text,
 AudioDataFormat format,
 AudioPushConsumer consumer)

getID()
getName()

streamAudioClip(Identifier id,
 long maxChunkSize,
 AudioPushConsumer consumer):void

string MorningAfternoonEvening

Figure 211. AudioCommon (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-294 11/20/00

3.19.1.1.1 AudioClipNotFound (Class)

This exception is thrown by an AudioClipStreamer if asked to push an audio clip which it
cannot find.

3.19.1.1.2 AudioClipStreamer (Class)

This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface.

3.19.1.1.3 AudioData (Class)

This typedef is a sequence of bytes that contain audio data. This data is used in conjunction
with AudioDataFormat to decode the data into voice.

3.19.1.1.4 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.19.1.1.5 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.19.1.1.6 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

3.19.1.1.7 TextEmbeddedTag (Class)

This interface defines constants for tags that may be embedded in text that is passed to the
TTSConverter. The TTSConverter replaces the tags it finds in text prior to converting the
text to speech. The MorningAfternoonEvening tag is replaced with the text ‘morning’ when
the conversion takes place between 00:00 and 11:59, ‘afternoon’ from 12:00 through 16:59,
and ‘evening’ from 17:00 to 23:59.

3.19.1.1.8 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

R1B2 GUI Detailed Design Rev. 0 3-295 11/20/00

3.19.1.1.9 TTSPriority (Class)

This enum defines the types of priorities that can be used when asking the TTSConverter to
convert text to speech.

3.19.1.1.10 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.19.1.1.11 UnsupportedAudioFormat (Class)

This exception is thrown when a specific AudioDataFormat is requested from an object that
does not support the given format.

R1B2 GUI Detailed Design Rev. 0 3-296 11/20/00

3.19.1.2 CommLogManagement (Class Diagram)

This Class Diagram shows the classes used for passing information between processes to
enable creating, pushing, viewing, and searching Communications Log entries.

CommLogEventType LogEntryList

*

1

LogEntryDataList

*1

LogEntryData

CommLogLogFilter LogEntry

LogIterator

*11 1

*

1

LogEntryAdded sequence LogEntry
sequence LogEntryData

getEntries(AccessToken token, LogFilter filter,
 long maxCount, LogEntryList entries) : LogIterator
addEntries(AccessToken token, LogEntryDataList logEntries) : void

factory createLogFilter() : LogFilter

TimeStamp m_startDate
TimeStamp m_endDate
Identifier eventID
string m_opCenterName
string m_containsText

equals() : boolean
factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

TimeStamp m_timestamp
Identifier m_eventID
string m_text
string m_author
string m_opCenterName

getMoreEntries(long maxCount) : LogEntryList
destroy():void

long timeOfLastUse String entryText
Identifier trafficEventID

Figure 212. CommLogManagement (Class Diagram)

3.19.1.2.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART II system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.19.1.2.2 CommLogEventType (Class)

This enumeration lists the possible events that the CommsLog service may push via the
CORBA event service. At present, only one event is defined, the addition of a new
LogEntry to the database.

3.19.1.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 GUI Detailed Design Rev. 0 3-297 11/20/00

3.19.1.2.4 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.19.1.2.5 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataList will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

3.19.1.2.6 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.
The initial request returns a LogIterator from which additional LogEntryList sequences can
be requested, in order to complete the entire query.

3.19.1.2.7 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.19.1.2.8 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a LogIterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 GUI Detailed Design Rev. 0 3-298 11/20/00

3.19.1.3 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

NetworkConnectionSite

Direction

Password

UserName

TimeStamp

SpecifiedObjectNotFound

InvalidStateUnsupportedOperation

CommandStatus

UniquelyIdentifiable GeoLocatable

Service

CHART2Exception

AccessDenied

NORTH
SOUTH
EAST
WEST
INNER_LOOP
OUTER_LOOP

string reason

string reasonstring reason

getID()
getName()

String getLocationDesc()

string reason
string debug

string reason
string requiredRights

ping():void
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

update(String status):void
completed(String final_status)

Figure 213. Common (Class Diagram)

3.19.1.3.1 AccessDenied (Class)

This class represents an access denied, or “no rights” failure.

3.19.1.3.2 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very
generic exceptions which require no special processing by the client. It supports a reason
string that may be shown to any user and a debug string that will contain detailed
information useful in determining the cause of the problem.

R1B2 GUI Detailed Design Rev. 0 3-299 11/20/00

3.19.1.3.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.19.1.3.4 Direction (Class)

This enumeration defines direction of travel.

3.19.1.3.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.19.1.3.6 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid
state to perform the operation.

3.19.1.3.7 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the Chart2DMSStatus.

3.19.1.3.8 Password (Class)

Typedef used to define the type of a Password.

3.19.1.3.9 Service (Class)

This interface is implemented by all services in the system that allow themselves to be
shutdown externally. All implementing classes provide a means to be cleanly shutdown and
can be pinged to detect if they are alive.

3.19.1.3.10 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object
that cannot be found by the invoked object.

3.19.1.3.11 TimeStamp (Class)

This typedef defines the type of TimeStamp fields.

R1B2 GUI Detailed Design Rev. 0 3-300 11/20/00

3.19.1.3.12 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.19.1.3.13 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which
it is called.

3.19.1.3.14 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

R1B2 GUI Detailed Design Rev. 0 3-301 11/20/00

3.19.1.4 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.

ArbQueueEntry

Message

ArbitrationQueue

*1

OperationalStatusCommunicationMode

CommFailure DisapprovedMessageContent

CommEnabled

string reason;
string debug;
long errorCode;

WordList disapprovedWords
string reason

validateMessageContent():void;

addEntry(AccessToken, ArbQueueEntry):void
removeEntry(AccessToken, byte[] trafficEventID):void
eventTypeChanged(AccessToken, TrafficEvent):void;
eventTransferred(AccessToken token,
 TrafficEvent trafficEvent,
 Identifier opCenterID,
 string opCenterName):void;

OK
COMM_FAILURE
HARDWARE_FAILURE

ONLINE
OFFLINE
MAINT_MODE

ArbQueueEntry(TrafficEvent, Message):ArbQueueEntry
getTrafficEvent():TrafficEvent
getTrafficEventID():byte[]
abstract setActive(String deviceName, String msg):void
abstract setInactive(String deviceName, String msg):void
abstract setFailed(String deviceName, String errorMsg):void

TrafficEvent m_trafficEvent
byte[] m_trafficEventID
Message m_message
boolean m_inProgress
boolean m_active
boolean m_deleted
boolean m_updated

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putInMaintenanceMode(AccessToken, CommandStatus):void
getCommMode() :CommunicationMode

Figure 214. DeviceManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-302 11/20/00

3.19.1.4.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.19.1.4.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.19.1.4.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.19.1.4.4 CommFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating
with a device.

R1B2 GUI Detailed Design Rev. 0 3-303 11/20/00

3.19.1.4.5 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.19.1.4.6 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are
not approved. This exception is also thrown if an attempt is made to put the device in an
invalid display state, such as putting the Beacons ON for a blank DMS.

3.19.1.4.7 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.19.1.4.8 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

R1B2 GUI Detailed Design Rev. 0 3-304 11/20/00

3.19.1.5 DictionaryManagement (Class Diagram)

This class diagram shows the interfaces used for the dictionaries.

SuggestionList

DictionaryEventType

1..*

1

DictionaryEventInfo

UniquelyIdentifiable

*

*

DictionaryWordTypeWordList

*

1

DictionaryWord

DictionarySuggestion

1

1

Dictionary

1

1

getWord():string;
getWordType():long;
factory create(string word, long bitmask):DictionaryWord

string m_word
long m_wordTypeBitmask

getMisspelledWord():DictionaryWord
getReplacements():WordList
factory create(DictionaryWord word,
 WordList replacements):DictionarySuggestion

DictionaryWord m_misspelledWord
WordList m_replacements

BannedWordsAdded
BannedWordsRemoved
ApprovedWordsAdded
ApprovedWordsRemoved

Identifier dictionaryID
WordList listOfWords

getID()
getName()

DMS_WORD
HAR_WORD

getBannedWords(AccessToken):WordList
removeBannedWordList(AccessToken,WordList):void
addBannedWordList(AccessToken,WordList):void
checkForBannedWords(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):WordList
getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedWordList(AccessToken, WordList):void
performApprovedWordsCheck(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):SuggestionList

Figure 215. DictionaryManagement (Class Diagram)

3.19.1.5.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHART2 messaging device. Examples of
messaging devices are DMS, HAR, etc.

R1B2 GUI Detailed Design Rev. 0 3-305 11/20/00

3.19.1.5.2 DictionaryEventInfo (Class)

This interface encapsulates the data that is passed with a dictionary CORBA event. It
contains information identifying the dictionary, and the list of words affected by the event.

3.19.1.5.3 DictionaryEventType (Class)

This represents the enumerations used for the different CORBA event types applicable to
the dictionary module.

3.19.1.5.4 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a
substitute for the word that could not be found in the approved words dictionary database.

3.19.1.5.5 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that
qualifies the type of devices that the word applies to.

3.19.1.5.6 DictionaryWordType (Class)

3.19.1.5.7 SuggestionList (Class)

This interface represents the IDL sequence typedef for the DictionarySuggestion.

3.19.1.5.8 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.19.1.5.9 WordList (Class)

This interface represents the IDL sequence typedef for the DictionaryWord.

R1B2 GUI Detailed Design Rev. 0 3-306 11/20/00

3.19.1.6 DMSControl (Class Diagram)

DMSEventType is
DMSAdded or

DMSConfigChanged

DMSEventType is
CurrentDMSStatus

FP9500Configuration

DMSArbQueueEntry

ArbQueueEntry

HARNotifierArbQueueEntry

*

1

DMSRPIData

ResponsePlanItemData

1

*

1

1

1

1

1 1

11

SignTypeBeaconType

DMSEvent

UniquelyIdentifiable GeoLocatableCommEnabled

DMSStatus

* 1

1

1

NetworkConnectionSite

DMSTestType

FP9500Status

FP9500DMS

1 1

1 1

11

*

1

*

DMSEventType is
DMSAdded or

DMSConfigChanged

1

1

SharedResource

HARMessageNotifier

DMSEventType is
CurrentDMSStatus

1

1

11

*

DMSList

ArbitrationQueue

1

1

Message

1

1

DMSPlanItemData

PlanItemData

OperationalStatus

SignTypeValuesBeaconTypeValues

DMSConfigurationEventInfo

1

*
1

1

Chart2DMS

1

1

CommunicationMode

SharedResourceManager

Chart2DMSFactory
Chart2DMSStatus

Chart2DMSConfiguration

111

1

1

*

** *

1

1

FontMetrics

SignMetrics

DMSConfiguration

DMSStatusEventInfo

1

MULTIString

ShortErrorStatus

DMSEventType

DMSMessage

1

1

MULTIParseFailure

DMS

DMSFactory

OK
COMM_FAILURE
HARDWARE_FAILURE

ONLINE
OFFLINE
MAINT_MODE

ResponsePlanItem m_responsePlanItem

getDMSID() : Identifier
setDMS(DMS) : void
getMessageID Identifier
setMessage (StoredMessage) : void

DMS m_dms
Identifier m_dmsID
StoredMessage m_storedMessage
Identifier m_storedMsgID

DMSEventType <discriminator>
 Identifier dmsID - forDMSDeleted
 or
 DMSConfigurationEventInfo dmsConfigInfo
 or
 DMSStatusEventInfo statusInfo

getArbitrationQueue() : ArbitrationQueue
performTesting(AccessToken, DMSTestType, long iterations, CommandStatus status) : void

activateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
deactivateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
isHARNoticeActive() : boolean
setAssociatedHAR(AccessToken, Chart2HAR):void
getAssociatedHAR() : Chart2HAR
getDirection():Direction
setDirection(Direction):void

DMSAdded
DMSDeleted
CurrentDMSStatus
DMSConfigChanged

factory createChart2DMSStatus() : Chart2DMSStatus

Identifier m_controllingOpCenterID
string m_controllingOpCenterName
NetworkConnectionSite m_NetworkConnectionSite

factory createChart2DMSConfiguration() : Chart2DMSConfiguration

long m_fmsDeviceID
Identifier m_owningOrgID
string m_agentHostName
string m_SNMPCommunityName
long m_pollInterval
long m_pollCycleDuration
string m_devicePhoneNumber
string m_deviceCommString
DeviceModelID m_deviceModelID
long m_deviceDropAddress
long m_deviceResponseTimeout
string m_deviceMaxBaudRate
DMSMessage m_shazamMessage

other = 1
bos = 2
cms = 3
vmsChar = =4
etc.

other = 1
none = 2
oneBeacon = 3
twoBeaconSyncFlash = 4
etc.

DMS theDMS
Identifier dmsID
DMSConfiguration config

short fontHeight
short characterWidth

long vmsSignHeightPixels
long vmsSignWidthPixels
short vmsCharacterHeightPixels
short vmsCharacterWidthPixels

factory createDMSConfiguration() :
 DMSConfiguration

string m_name
string m_deviceLocation
SignType m_dmsSignType
SignMetrics m_signMetrics
FontMetrics m_fontMetrics
long m_pages
long m_dmsTimeCommLoss
BeaconType m_dmsBeaconType
long m_defaultJustificationLine
long m_defaultPageOnTime
long m_defaultPageOffTime

Identifier dmsID
DMSStatus status

getBeaconState() : octet
getMultiString() : MULTIString
getMinimumCharacters() : long
factory createDMSMessage(MULTIString multiStringMessage,
 octet beaconState) : DMSMessage

octet m_dmsMessageBeacon
MULTIString m_dmsMessageMultiString

sequence DMSList

blankSign(AccessToken token, CommandStatus status) : void
getConfiguration(AccessToken token) : DMSConfiguration
getStatus() : DMSStatus
isBlank() : boolean
pollNow(AccessToken token, CommandStatus status) : void
putDMSInMaintMode(AccessToken, CommandStatus status) : void
putDMSOnline(AccessToken token, CommandStatus status) : void
remove(AccessToken token) : void
resetController(AccessToken token, CommandStatus status) : void
setConfiguration(AccessToken token, DMSConfiguration config,CommandStatus status) : void
setMessage(AccessToken token, DMSMessage message, CommandStatus status) : void
takeOffline(AccessToken token, CommandStatus status) : void

createDMS(AccessToken token, DMSConfiguration config) : DMS
getDMSList() : DMSList

string reason

CommandStatus m_cmdStatus

factory createDMSStatus() : DMSStatus

DMSMessage m_currentMessage
boolean m_beaconState
CommunicationsMode m_commMode
OperationalStatus m_opStatus
ShortErrorStatus m_shortErrorStatus
long m_statusChangeTime

DMSRandom
DMSPermutation

factory createFP9500Status() : FP9500Status

octet m_currentMsgNum
octet m_currentMsgSource

performPixelTest(AccessToken token, CommandStatus status) : void

getDMS() : Chart2DMS
getMessage() : DMSMessage
setDMS(Chart2DMS) : void
setMessage(DMSMessage) : void
factory create DMSRPIData() :
 DMSRPIData

Chart2DMS m_dms
DMSMessage m_message

Figure 216. DMSControl (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-307 11/20/00

3.19.1.6.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.19.1.6.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.19.1.6.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the
BeaconTypeValues class. It is a part of a DMSConfiguration object.

3.19.1.6.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices
(number of beacons and whether and in what manner they flash).

R1B2 GUI Detailed Design Rev. 0 3-308 11/20/00

3.19.1.6.5 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to
be used in manipulating the Chart II-specific DMS objects within Chart II. It provides a
method for getting the DMSArbitrationQueue for a Chart II DMS, which can then be used
by traffic events to provide input as to what each traffic event desires to be on the sign. It
also provides a method to perform testing on a sign. This method can be extended by
derived classes for specific models of signs, which know how to perform certain types of
testing on their specific model of sign. Chart II business rules include concepts such as
shared resources, arbitration queues, and linking devices usage to traffic events, concepts
which go beyond what would be industry-standard DMS control.

3.19.1.6.6 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to Chart II
processing. Such information includes how to contact the sign under Chart II software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.19.1.6.7 Chart2DMSFactory (Class)

The Chart2DMSFactory class extends the DMSFactory interface to provide additional
Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS
objects). It implements SharedResourceManager capbility control DMS objects as shared
resources.

3.19.1.6.8 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to Chart II processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.19.1.6.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

R1B2 GUI Detailed Design Rev. 0 3-309 11/20/00

3.19.1.6.10 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.19.1.6.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign
(DMS) objects within Chart II. It specifies methods for setting messages and clearing
messages from a sign (in maintenance mode), polling a sign, changing the configuration of
a sign, and reseting a sign. (Setting messages on a sign in online mode are not accomplished
by manipulating a DMS directly; that is accomplished by manipulating traffic events, which
interfaces with the DMSArbitrationQueue of a sign. This activity involves the DMS
extension, Chart2DMS, which defines interactions with signs under Chart II business rules.)

3.19.1.6.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used
for most standard entries placed on the arbitration queue. When its setActive, setInactive,
and setFailed methods are called, it adds a log entry to its traffic event and calls the
appropriate method on its response plan item (setActive, setInactive, or update).

3.19.1.6.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract class that describes the configuration of a DMS
device. This configuration information is normally fairly static: things like the size of the
sign in characters and pixels, its name and location, and how to contact the sign (as opposed
to dynamic information like the current message on the sign, which is defined in an
analogous Status object).

3.19.1.6.14 DMSConfigurationEventInfo (Class)

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType
DMSConfigChanged. It contains a DMSConfiguration object that details the new
configuration for a Chart II DMS object.

3.19.1.6.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS
operations which can be pushed on an Event Channel to update event consumers on DMS-
related activities. The four types of events, defined by the enumeration DMSEventType,
are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

R1B2 GUI Detailed Design Rev. 0 3-310 11/20/00

3.19.1.6.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the four types of events relating to
DMS operations which can be pushed on an Event Channel to update event consumers on
DMS-related activities. The four types of events are: DMSAdded, DMSDeleted,
CurrentDMSStatus, and DMSConfigChanged.

3.19.1.6.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
Chart II system. It also provides a method to get a list of DMS devices currently in the
system.

3.19.1.6.18 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory
and other classes for maintaining the list or other lists of DMS objects.

3.19.1.6.19 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and so within a
DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

3.19.1.6.20 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanItemData.

3.19.1.6.21 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.19.1.6.22 DMSStatus (Class)

The DMSStatus class is an abstract value-type class that provides status information for a
DMS. This status information is relatively dynamic: things like the current message on the
sign, its beacon state, its current operational mode (online, offline, maintenance mode), and
current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More
static information about the sign, such as its size and location, is defined in an analogous
Configuration object.)

R1B2 GUI Detailed Design Rev. 0 3-311 11/20/00

3.19.1.6.23 DMSStatusEventInfo (Class)

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType
CurrentDMSStatus. It contains a DMSStatus object that details the new status for a Chart II
DMS object.

3.19.1.6.24 DMSTestType (Class)

The DMSTestType enumeration identifies two types of tests which can be performed on
DMS devices: random and permutation.

3.19.1.6.25 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information
regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

3.19.1.6.26 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
Chart2DMSConfiguration class to provide configuration information specific to an FP9500
model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a
specific brand and model of sign for manufacturer-specific configuration information.

3.19.1.6.27 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed
interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest
method, which knows how to invoke and interpret a pixel test as supported by the FP9500
model DMS.

3.19.1.6.28 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the Chart2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the FP9500 model includes the current message number and current message
source.

3.19.1.6.29 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

R1B2 GUI Detailed Design Rev. 0 3-312 11/20/00

3.19.1.6.30 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.19.1.6.31 HARNotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry
used for entries that are placed on the arbitration queue to put a “SHAZAM” message on a
DMS. These types of messages have a low priority and are not allowed to overwrite any
standard message (from a DMSArbQueueEntry) that is currently displayed on a device.
These types of messages are also different in that they are not added to the queue directly
by a response plan item and are instead included as a sub-task of activating a message on a
HAR. The HAR uses a command status object to track the progress of the HAR notifier
message.

3.19.1.6.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.19.1.6.33 MULTIParseFailure (Class)

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS
message cannot be correctly parsed.

3.19.1.6.34 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class
contains a MULTIString value to specify the content of the sign, in addition to the beacon
state value.

3.19.1.6.35 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the Chart2DMSStatus.

R1B2 GUI Detailed Design Rev. 0 3-313 11/20/00

3.19.1.6.36 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

3.19.1.6.37 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.19.1.6.38 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

3.19.1.6.39 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.19.1.6.40 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.6.41 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined
by the NTCIP center to field standard for DMS that specifies error conditions that may be
present on the device. This class is used to encapsulate the bit mask and provide a user-
friendly interface to the error conditions. The DMSStatus class contains a value of this type.

R1B2 GUI Detailed Design Rev. 0 3-314 11/20/00

3.19.1.6.42 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information
regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration
object.

3.19.1.6.43 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the
SignTypeValues class. It is a part of a DMSConfiguration object.

3.19.1.6.44 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are
bos, cms, vmsChar, etc.

3.19.1.6.45 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-315 11/20/00

3.19.1.7 PlanManagement (Class Diagram)

This class diagram contains the interfaces used in the creation and management of plans. A
plan is a group of actions that are set-up in advance to be used in response to a traffic event.
Given the unpredictable nature of traffic events, pre-defined plans are usually only useful
for congestion, safety messages, and weather-related messages.

PlanItemList

PlanList PlanItemData

PlanEventType

1

1

*1 *1

PlanItemChangedEventInfo

UniquelyIdentifiable

1..*

1

1..*

1

PlanNameChangeEventInfoPlanAddedEventInfo

PlanItemAddedEventInfo PlanItemRemovedEventInfo

PlanFactory Plan

PlanItem

isUsingObject(IdentifierList objectIDs):boolean

PlanAdded
PlanRemoved
PlanItemAdded
PlanItemRemoved
PlanNameChanged
PlanItemChanged

PlanItem thePlanItem;
PlanItemData itemData;
string itemName;
Identifier planID;
Identifier planItemID;

getID()
getName()

Identifier planID
string newName

Plan thePlan
Identifier planID

Identifier planID
Identifier planItemID

PlanItem planItem
Identifier planID
Identifier planItemID

createPlan(AccessToken token,
 string name):Plan
getPlans():PlanList

setName(AccessToken,string):void
addItem(AccessToken,PlanItemData):PlanItem
removeItem(AccessToken,PlanItem):void
getItems():PlanItemList
remove(AccessToken):void
isUsingObject(IdentifierList objectIDs)

setName(AccessToken, string):void
setData(AccessToken, PlanItemData):void
getData():PlanItemData
remove(AccessToken):void
getPlanID():Identifier
isUsingObject(IdentifierList):boolean

Figure 217. PlanManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-316 11/20/00

3.19.1.7.1 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic
event. Each action is defined to be a Plan item. The Plan supports functionality to add and
remove plan items.

3.19.1.7.2 PlanAddedEventInfo (Class)

The PlanAddedEventInfo class defines the data passed in the PlanAdded event.

3.19.1.7.3 PlanEventType (Class)

The PlanEventType class is an enumeration that describes the types of events that can be
pushed for plans. When a plan item is added or modified it is up to the derived item type to
push the appropriate type of event.

3.19.1.7.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans that can be used in the
system.

3.19.1.7.5 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.19.1.7.6 PlanItemAddedEventInfo (Class)

The PlanItemAddededEventInfo class defines the data passed in the PlanItemAdded event.

3.19.1.7.7 PlanItemChangedEventInfo (Class)

The PlanItemChangedEventInfo class defines the data passed in the PlanItemChanged
event.

3.19.1.7.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.19.1.7.9 PlanItemList (Class)

The PlanItemList class is simply a collection of PlanItem objects.

3.19.1.7.10 PlanItemRemovedEventInfo (Class)

The PlanItemRemovedEventInfo defines the data passed in the PlanItemRemoved event.

R1B2 GUI Detailed Design Rev. 0 3-317 11/20/00

3.19.1.7.11 PlanList (Class)

The PlanList class is simply a collection of Plan objects.

3.19.1.7.12 PlanNameChangeEventInfo (Class)

The PlanNameChangeEventInfo class defines the data passed in the PlanNameChanged
event.

3.19.1.7.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-318 11/20/00

3.19.1.8 HARControl (Class Diagram)

This class diagram contains the interfaces used relating to the control of Highway Advisory
Radio (HAR).

1

HARSlotUsageIndicator

HARMessageClipList

*

*

1

ArbitrationQueue
HARList1

1

1..*

*

HARSlotNumber HARSlotData

Chart2HARConfiguration

Chart2HARStatus

11

11

HARConfiguration

HARStatus

11

1

1

Message

Chart2HARFactory

HARRPIData

HARMessage

1

*

11

1..*1

0..11

*1

HARMessageTextClip
HARMessageAudioClip

HARMessagePrestoredClip

HARMessage

HARPlanItemData
StoredMessage

1 *

1

*

HARArbQueueEntry

ArbQueueEntry

*

1

HAR

HARMessageNotifier

HARFactory

HARMessageAudioDataClip

1

SharedResource

Chart2HAR

UniquelyIdentifiable CommEnabled GeoLocatable

HARSlotDataList

HAREventType

1..* 1

HARConfigurationEventInfo HARStatusChangedEventInfo

HARMessageClip*

SharedResourceManager

DefaultHeader
DefaultTrailer
DefaultMessage
ImmediateMessage
User

ResponsePlanItem m_responsePlanItem
HARMsgNotifierIDList m_notifiersToActivate

factory createAudioDataClip(in AudioDataFormat format,
 in AudioData data):HARMessageAudioDataClip

AudioDataFormat m_audioDataFormat
AudioData m_audioData

getSlotNumber():HARSlotNumber
setSlotNumber(HARSlotNumber):void
factory createPrestoredClip():HARMessagePrestoredClip

HARSlotNumber slotNumber

HARAdded
HARRemoved
HARStatusChanged
HARConfigurationChanged

HAR theHAR
Identifier id
HARConfiguration config

Identifier id
HARStatus status

getDescription():string
setDescription(string):void
getVoiceSeconds():long
setVoiceSeconds(long voiceSeconds):void

string m_description
long m_voiceSeconds

HARSlotNumber slotNumber
HARMessageClip slotMessageClip
HARSlotUsageIndicator slotUsageIndicator

Chart2HAR m_har
HARMessage m_message
HARMsgNotifierIDList m_msgNotifiersToActivate

getArbitrationQueue():ArbitrationQueue

factory createChart2HARConfiguration():
 Chart2HARConfiguration

HARMsgNotifierIDList m_msgNotifiersfactory createChart2HARStatus():Chart2HARStatus

Identifier m_controllingOpCtrID
string m_controllingOpCtrName
NetworkConnectionSite m_networkConnectionSite

factory createHARConfiguration():HARConfiguration

string m_name
string m_deviceLocation
string m_devicePhoneNumber
string m_deviceMonitorPhoneNumber
HARMessage m_defaultMessage
HARMessageClip m_defaultHeader
HARMessageClip m_defaultTrailer
long m_interMessageSpacingSecs
long m_maxStoredVoiceSeconds

factory createHARStatus():HARStatus

HARMessage m_currentMessage
HARSlotDataList m_slotData
boolean m_transmitterOn
CommMode m_commMode

HARMessageClip m_header
HARMessageClipList m_body
HARMessageClip m_trailer
boolean m_useDefaultHeader
boolean m_useDefaultTrailer

getMessageText():string
setMessageText(string):void
stream(in long maxChunkSize,
 in AudioDataFormat format,
 in AudioPushConsumer consumer):void
factory createTextClip(string text):HARMessageTextClip

string m_messageText

stream(in long maxChunkSize,
 in AudioPushConsumer consumer:void
factory createAudioClip(Identifier,
 AudioStreamer):HARMessageAudioClip

Identifier m_audioClipID
AudioClipStreamer m_streamer

factory createHARPlanItemData():
 HARPlanItemData

HAR m_har
Identifier m_harID
StoredMessage m_storedMsg
Identifier m_storedMsgID
Direction m_direction

setConfiguration(AccessToken, HARConfiguration, CommandStatus):void
getConfiguration() : HARConfiguration
getStatus():HARStatus
setMessage(AccessToken, HARMessage, CommandStatus):void
blank(AccessToken, CommandStatus):void
storeSlotMessage(AccessToken, HARSlotNumber, HARMessageClip,
 CommandStatus):void
deleteSlotMessage(AccessToken, HARSlotNumber,
 CommandStatus):void
isBlank():boolean
reset(AccessToken, CommandStatus):void
setup(AccessToken, CommandStatus):void
setTransmitterOff(AccessToken, CommandStatus):void
setTransmitterOn(AccessToken, CommandStatus):void
remove(AccessToken, CommandStatus):void

createHAR(AccessToken,
 HARConfiguration) : HAR
getHARs():HARList

string

Figure 218. HARControl (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-319 11/20/00

3.19.1.8.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.19.1.8.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.19.1.8.3 Chart2HAR (Class)

The Chart2HAR class is an extension of the HAR that is aware of Chart2 business rules,
such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.19.1.8.4 Chart2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART II specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

R1B2 GUI Detailed Design Rev. 0 3-320 11/20/00

3.19.1.8.5 Chart2HARFactory (Class)

This interface defines objects capable of creating Chart2HAR objects. This factory is also
responsible for monitoring the HARs as shared resources and must report when a HAR that
is currently broadcasting a message (other than the default) does not have a user logged into
the system that is from the controlling operations center.

3.19.1.8.6 Chart2HARStatus (Class)

This class contains status information for a Chart2HAR object. This information is specific
to Chart II processing and extends beyond the status related to typical HAR device control.

3.19.1.8.7 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.19.1.8.8 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.19.1.8.9 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to
broadcast traffic related information over a localized radio transmitter, making the
information available to the traveler.

3.19.1.8.10 HARArbQueueEntry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a
traffic event. This entry also specifies the HARMessageNotifiers to be activated when the
message is activated.

3.19.1.8.11 HARConfiguration (Class)

This class contains configuration data for a HAR device.

3.19.1.8.12 HARConfigurationEventInfo (Class)

This class defines data pushed with a HARConfigurationChanged and HARAdded CORBA
event.

R1B2 GUI Detailed Design Rev. 0 3-321 11/20/00

3.19.1.8.13 HAREventType (Class)

This enumeration defines the types of CORBA events that are pushed on a HARControl
event channel.

3.19.1.8.14 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system.

3.19.1.8.15 HARList (Class)

The HARList class is simply a collection of HAR objects.

3.19.1.8.16 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.19.1.8.17 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is
used to stream the actual voice data.

3.19.1.8.18 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.19.1.8.19 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.19.1.8.20 HARMessageClipList (Class)

The HARMessageClipList is a collection of HARMessageClip objects.

R1B2 GUI Detailed Design Rev. 0 3-322 11/20/00

3.19.1.8.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.19.1.8.22 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.19.1.8.23 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

3.19.1.8.24 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.19.1.8.25 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.19.1.8.26 HARSlotData (Class)

This struct defines the data used to identify the contents of a slot in the HAR controller.

3.19.1.8.27 HARSlotDataList (Class)

The HARSlotDataList class is simply a collection of HARSlotData objects.

3.19.1.8.28 HARSlotNumber (Class)

The HARSlotNumber is an integer used to specify slot numbers on a HAR controller.

3.19.1.8.29 HARSlotUsageIndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

R1B2 GUI Detailed Design Rev. 0 3-323 11/20/00

3.19.1.8.30 HARStatus (Class)

This class contains data that indicates the current status of a HAR device.

3.19.1.8.31 HARStatusChangedEventInfo (Class)

This class contains data that is pushed when the HARStatusChanged CORBA event is
pushed on the HARControl event channel.

3.19.1.8.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.19.1.8.33 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.19.1.8.34 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.8.35 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.19.1.8.36 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-324 11/20/00

3.19.1.9 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers,
user login sessions, and organizations.

ResponseParticipant

*

1

1

UniquelyIdentifiable

ResourceEventType

ControllingOpCtrChangeEventInfo

LoginSessionList

SharedResourceList

1..* *

1..*

*

UnhandledControlledResourcesInfo

1

ResponseParticipantType

UserLoginSession

*

1

OperationsCenter SharedResource SharedResourceManager

TransferrableSharedResource

Organization

HasControlledResources ResourceControlConflict

LoginFailure LogoutFailure InvalidOperationsCenter

11

TYPE_ORGANIZATION
TYPE_UNIT
TYPE_RESOURCE
TYPE_SPECIAL_NEEDS

string m_name
ResponseParticipantType m_type

getID()
getName()

ControllingOpCtrChanged
UnhandledControlledResourcesEvent

Identifier resourceID
string opCtrName
Identifier opCtrID

Identifier opCtrID
string opCtrName

string reason
string controllingOpCenterName

string reason string reason string reason

getOpCenter():OperationsCenter
getUsername():UserName
ping():boolean
void forceLogout(AccessToken token)

loginUser(UserLoginSession loginSession,
 UserName name,
 string password,
 string hostname):AccessToken
logoutUser(AccessToken token,
 UserLoginSession loginSession):void
changeUser(AccessToken token,
 UserLoginSession oldSession,
 UserLoginSession newSession,
 UserName userName,
 string password):AccessToken
getControlledResources():SharedResourceList
getLoginSessions():LoginSessionList
forceLogout(AccessToken token,
 UserLoginSession loginSession):void
isUserLoggedIn(UserName userName):boolean
getNumLoggedInUsers():long
transferSharedResources(AccessToken token,
 SharedResourceList resources,
 OperationsCenter targetOpCenter):void
verifyUserPassword(UserName userName,
 string password):boolean
addResponseParticipant(AccessToken token,
 ResponseParticipant participant) : void
removeResponseParticipant(AccessToken token,
 ResponseParticipant participant) : void
getResponseParticipants() : ResponseParticipant[]

getControllingOpCenter():Identifier
getControllingOpCenterName():string
getOwnerOrgID():Identifier

getResources() : SharedResourceList
getControlledResources(Identifier opCtrID) : SharedResourceList
hasControlledResources(Identifier opCtrID) : boolean

void setControllingOpCenter(AccessToken token,
 Identifier opCtrID,
 string opCtrName)
void clearControllingOpCenter(AccessToken token)

string reason

Figure 219. ResourceManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-325 11/20/00

3.19.1.9.1 ControllingOpCtrChangeEventInfo (Class)

The ControllingOpCtrChangeEventInfo class defines data to be passed on a
ControllingOpCtrChange event.

3.19.1.9.2 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do
something which requires that no resources be controlled, yet the Operations Center which
the user is logged in to is still controlling one or more shared resources.

3.19.1.9.3 InvalidOperationsCenter (Class)

Exception which describes a failure caused when the operations center specified is not valid
for the attempted operation.

3.19.1.9.4 LoginFailure (Class)

This class represents an exception that describes a login failure.

3.19.1.9.5 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects.

3.19.1.9.6 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

3.19.1.9.7 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.19.1.9.8 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an
organization, that is an administrative body that can control or own resources.

R1B2 GUI Detailed Design Rev. 0 3-326 11/20/00

3.19.1.9.9 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the
resource is under the control of a different operations center and the requesting user does
not have the functional right to override the restriction.

3.19.1.9.10 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types.

3.19.1.9.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.19.1.9.12 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a
response to an event. This could be an external organization, a mobile unit, a mobile device
or special purpose vehicle, or a special needs vehicle equipped to handle unusual or
hazardous situations.

3.19.1.9.13 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.19.1.9.14 SharedResourceList (Class)

A SharedResourceList is simply a collection of SharedResource objects.

3.19.1.9.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.9.16 TransferrableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is
implemented by SharedResource objects whose control can be transferred from one
operations center to another.

R1B2 GUI Detailed Design Rev. 0 3-327 11/20/00

3.19.1.9.17 UnhandledControlledResourcesInfo (Class)

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that
an OperationsCenter is controlling one or more controlled resources but has no users logged
in.

3.19.1.9.18 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.19.1.9.19 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

R1B2 GUI Detailed Design Rev. 0 3-328 11/20/00

3.19.1.10 HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message
notifications. The HAR notifiers can be SHAZAMs or DMS devices that are acting as
SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from overwriting another
type of DMS message.

SHAZAMFactory

*1

SharedResourceManager

HARMsgNotifierIDList

SHAZAMEventType

1..*1

SHAZAMConfigurationEventInfo SHAZAMStatusChangeEventInfo

HARMessageNotifier

UniquelyIdentifiable

SHAZAMConfiguration

SHAZAMStatus

SHAZAM

SharedResource UniquelyIdentifiable

GeoLocatableCommEnabled

11

11

Identifier

createSHAZAM(AccessToken,
 SHAZAMConfigData) : SHAZAM

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

SHAZAMAdded
SHAZAMRemoved
SHAZAMStatusChanged
SHAZAMConfigurationChanged

SHAZAM theSHAZAM
Identifier id;
SHAZAMConfiguration config

Identifier id
SHAZAMStatus status

activateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
deactivateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
isHARNoticeActive() : boolean
setAssociatedHAR(AccessToken, Chart2HAR):void
getAssociatedHAR() : Chart2HAR
getDirection():Direction
setDirection(Direction):void

factory createSHAZAMConfiguration():SHAZAMConfiguration

string m_name;
string m_location
string m_phoneNumber
Direction m_direction
HAR m_har
long m_refreshIntervalMins

factory createSHAZAMStatus():SHAZAMStatus

boolean m_activated
CommunicationMode m_commMode
Identifier m_controllingOpCtrID
string m_controllingOpCtrName
NetworkConnectionSite m_networkConnectionSite

setBeaconsOn(AccessToken, CommandStatus):void
setBeaconsOff(AccessToken, CommandStatus):void
refresh(AccessToken, CommandStatus):void
setConfiguration(AccessToken, SHAZAMConfigData, CommandStatus)
getConfiguration(AccessToken) : SHAZAMConfigData
getStatus() : SHAZAMStatus
remove(AccessToken):void

Figure 220. HARNotification (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-329 11/20/00

3.19.1.10.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.19.1.10.2 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.19.1.10.3 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices which
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.19.1.10.4 HARMsgNotifierIDList (Class)

This typedef is a sequence of HARMessageNotifier identifiers.

3.19.1.10.5 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.19.1.10.6 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

R1B2 GUI Detailed Design Rev. 0 3-330 11/20/00

3.19.1.10.7 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.10.8 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

3.19.1.10.9 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.19.1.10.10 SHAZAMConfigurationEventInfo (Class)

This class contains data that is pushed on the SHAZAMControl CORBA event channel
with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

3.19.1.10.11 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control
event channel.

3.19.1.10.12 SHAZAMFactory (Class)

This CORBA interface allows new SHAZAM objects to be added to the system.

3.19.1.10.13 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.19.1.10.14 SHAZAMStatusChangeEventInfo (Class)

This class contains data that is pushed on a SHAZAMControl event channel with a
SHAZAMStatusChanged event.

3.19.1.10.15 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-331 11/20/00

3.19.1.11 LibraryManagement (Class Diagram)

This class diagram shows all classes and relationships relating to message libaries.

Message

1

1

LibraryEventType StoredMessageData

StoredMessageAddedEventInfo StoredMessageRemovedEventInfo LibraryNameChangedEventInfoLibraryAddedEventInfo

UniquelyIdentifiable

*1
*

StoredMessageList

MessageLibraryList

1..*

*

1..*

1

1

MessageLibrary
MessageLibraryFactory

StoredMessage

validateMessageContent():void;
LibraryAdded
LibraryRemoved
LibraryNameChanged
StoredMessageAdded
StoredMessageRemoved
StoredMessageChanged

Identifier msgID
Identifier libID
string description
string category
string lastModifiedBy
Message msg

StoredMessage storedMsg;;
StoredMessageData msgData;

Identifier msgID
Identifier libID

Identifier id;
string name;

Identifier id;
MessageLibrary lib;
string name;

getID()
getName()

setName(AccessToken token, string name):void
createStoredMessage(AccessToken token,
 Message msg,
 string description,
 string category):StoredMessage
getStoredMessages():StoredMessageList
isUsedByAnyPlan():boolean
isMessageUsedByAnyPlan(Identifier msgID):boolean
removeMessage(AccessToken, StoredMessage):void
remove(AccessToken):void

createLibrary(AccessToken token,string name):MessageLibrary
getLibraryList():MessageLibraryList

getMessageData():StoredMessageData
getMessage():Message
setMessage(AccessToken, Message):void
setMessageData(AccessToken token,
 string description,
 string category,
 Message msg):void
 remove(AccessToken):void

Figure 221. LibraryManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-332 11/20/00

3.19.1.11.1 LibraryAddedEventInfo (Class)

This struct defines data passed with a DMSLibraryAdded event.

3.19.1.11.2 LibraryEventType (Class)

This enum defines the types of events that can be pushed on a LibraryManagement event
channel.

3.19.1.11.3 LibraryNameChangedEventInfo (Class)

This struct defines data passed with a LibraryNameChanged event.

3.19.1.11.4 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.19.1.11.5 MessageLibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.19.1.11.6 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.19.1.11.7 MessageLibraryList (Class)

A collection of MessageLibrary objects.

3.19.1.11.8 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.19.1.11.9 StoredMessageAddedEventInfo (Class)

This struct defines the data passed with a StoredMessageAdded event.

3.19.1.11.10 StoredMessageData (Class)

This structure defines the data stored in a StoredMessage.

R1B2 GUI Detailed Design Rev. 0 3-333 11/20/00

3.19.1.11.11 StoredMessageList (Class)

A collection of StoredMessage objects.

3.19.1.11.12 StoredMessageRemovedEventInfo (Class)

This struct defines data passed with a StoredMessageRemoved event.

3.19.1.11.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-334 11/20/00

3.19.1.12 LogCommon (Class Diagram)

This class diagram contains all interfaces that are necessary to multiple log types within the
CHART II system.

LogIterator LogEntryDataList

LogEntryData LogEntryList

LogEntryLogFilter

1..*1

1..*

1
getMoreEntries(long maxCount) : LogEntryList
destroy():void

long timeOfLastUse sequence LogEntryData
String entryText
Identifier trafficEventID

sequence LogEntry

equals() : boolean
factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

TimeStamp m_timestamp
Identifier m_eventID
string m_text
string m_author
string m_opCenterName

factory createLogFilter() : LogFilter

TimeStamp m_startDate
TimeStamp m_endDate
Identifier eventID
string m_opCenterName
string m_containsText

Figure 222. LogCommon (Class Diagram)

3.19.1.12.1 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

3.19.1.12.2 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.19.1.12.3 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataList will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

R1B2 GUI Detailed Design Rev. 0 3-335 11/20/00

3.19.1.12.4 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.
The initial request returns a LogIterator from which additional LogEntryList sequences can
be requested, in order to complete the entire query.

3.19.1.12.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.19.1.12.6 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a LogIterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 GUI Detailed Design Rev. 0 3-336 11/20/00

3.19.1.13 TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

TrafficEventType

LaneState

11

11
LaneConfiguration

Lane

Ramp

*

1

Shoulder

*1

TrafficEvent

RoadwayEvent

ActionEvent

CongestionEvent

SafetyMessageEvent

PlannedRoadwayClosure

SpecialEvent

WeatherSensorEvent

DisabledVehicleEventWeatherServiceEvent

Incident

ResponsePlanItem CommandStatus ResponsePlanItemData

DMSRPIData HARRPIData

1 1

*

1

OrganizationParticipation

ResourceDeployment

*

1

TrafficEventFactory ResponseParticipation

TYPE_PLANNED_ROADWAY_CLOSURE
TYPE_INCIDENT
TYPE_DISABLED_VEHICLE
TYPE_WEATHER_SENSOR_ALERT
TYPE_WEATHER_SERVICE_ALERT
TYPE_ACTION
TYPE_CONGESTION
TYPE_RECURRING_CONGESTION
TYPE_SAFETY
TYPE_SPECIAL_EVENT

LANE_OPEN
LANE_CLOSED
LANE_NOT_EXIST

getParticipationData() : ResponseParticipationData
setNotified(AccessToken token,
 boolean hasBeenNotified) : void
overrideNotificationTime(AccessToken token ,
 TimeStamp notificationTime) : void
remove(AccessToken token) : void

setRespondedToEvent(AccessToken token,
 boolean hasResponded) : void
overrideRespondedTime(AccessToken token,
 TimeStamp respondedTime) : void

setArrivedOnScene(AccessToken token,
 boolean hasArrived) : void
setDepartedFromScene(AccessToken token,
 boolean hasDeparted) : void
overrideArrivalTime(AccessToken token,
 TimeStamp arrivalTime) : void
overrideDepartureTime(AccessToken token,
 TimeStampdepartureTime) : void

getTargetID():Identifier
execute(AccessToken token):void
setItemData(AccessToken token,
 ResponsePlanItemData data):void
getItemData(AccessToken token):ResponsePlanItemData
isActive():boolean
hasBeenExecuted():boolean
setActive(AccessToken token):void
setInactive(AccessToken token):void
getDescription():string
setDescription(AccessToken token,
 string description):void
eventTypeChanged(AccessToken token,
 TrafficEvent newTrafficEvt):void
eventTransferred(AccessToken token,
 TrafficEvent newTrafficEvt,
 Identifier opCenterID,
 string opCenterName):void
isUsingObject(Identifier[] objectIDs):boolean
remove(AccessToken token):void

getTargetID():Identifier
isExecutable() : boolean
execute(AccessToken token,
 TrafficEvent trafficEvt,
 CommandStatus status):void
revokeExecution(AccessTiken token,
 TrafficEvent trafficEvt):void
isUsingObject(Identifier[] objectIDs):boolean
eventTypeChanged(AccessToken token,
 TrafficEvent newTrafficEvt):void
eventTransferred(AccessToken token,
 TrafficEvent newTrafficEvt):void

getLanes():Lane[]

Lane[] m_lanes

LaneState m_currentState
Direction m_directionOfTravel
TimeStamp m_timeStateChanged
long m_offsetFromLeft

getName() : string
createTrafficEvent(AccessToken token,
 TrafficEventType type,
 BasicEventData eventData,
 LogEntry[] initialEntries):TrafficEvent
getTrafficEvents():TrafficEvent[]
getStandardLaneConfigurations():LaneConfiguration[]

addLogEntry(AccessToken token,
 string text):void
addResponseParticipation(AccessToken token,
 ResponseParticipationData rpdata):void
addResponseItem(AccessToken token,
 ResponsePlanItemData rpid):void
associateEvent(AccessToken token,
 TrafficEvent eventToAssociate,
 boolean primary): void
removeEventAssociation(AccessToken token,
 TrafficEvent associatedEvent,
 Identifier associatedEventID):void
changeType(AccessToken token,
 TrafficEventType newEventType):void
close(AccessToken token):void
isClosed(TimeStamp closureTme):boolean
overrideClosureTime(AccessToken token,
 TimeStamp closeTime);void
executeResponse(AccessToken token):void
getAssociatedEvents():Identifier[]
getHistory(LogFilter filter,
 long maxCount,
 LogEntry[] entries):LogIterator
isPrimary():boolean
setPrimary(AccessToken token):void
setSecondary(AccessToken token):void
getResponseParticipations():ResponseParticipation[]
getBasicEventData():BasicEventData

getLaneConfiguration():LaneConfiguration
setLaneConfiguration(AccessToken token,
 LaneConfiguration laneConfig)

isRecurring(AccessToken token)
setRecurring(AccessToke token,
 boolean isRecurring):void

m_recurring

setVehicleData(AccessToken token,
 IncidentVehicleData vehicleData):void
setType(AccessToken token,
 IncidentType type):void
setRoadConditions(AccessToke token,
 RoadConditionsData roadConditions):void
overrideLaneOpenCloseTime(
 AccessToken token,
 long laneOffsetFromLeft,
 TimeStamp timeOpenedOrClosed):void

Figure 223. TrafficEventManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-337 11/20/00

3.19.1.13.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not
fit well into the other event categories. An example of this type of event would be debris in
the roadway.

3.19.1.13.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.19.1.13.3 CongestionEvent (Class)

This class models roadway congestion that may be tagged as recurring or non-recurring
through the use of an attribute.

3.19.1.13.4 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

3.19.1.13.5 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.19.1.13.6 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.19.1.13.7 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves
one or more vehicles and roadway lane closures.

R1B2 GUI Detailed Design Rev. 0 3-338 11/20/00

3.19.1.13.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.19.1.13.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.19.1.13.10 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

3.19.1.13.11 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

3.19.1.13.12 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will
be expanded in future releases to include interfacing with the EORS system.

3.19.1.13.13 Ramp (Class)

This class represents a ramp type traffic lane.

3.19.1.13.14 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.19.1.13.15 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanItem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.19.1.13.16 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

R1B2 GUI Detailed Design Rev. 0 3-339 11/20/00

3.19.1.13.17 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.19.1.13.18 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the
heirarchy provides a break off point for traffic event types that pertain to other modals.

3.19.1.13.19 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety
message to a device.

3.19.1.13.20 Shoulder (Class)

This class represents a shoulder type traffic lane.

3.19.1.13.21 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or
professional sporting event.

3.19.1.13.22 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.19.1.13.23 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the
system.

3.19.1.13.24 TrafficEventType (Class)

This enum defines the types of traffic events that are supported by the system.

3.19.1.13.25 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the
system’s weather monitoring devices. Operators will need to manually enter the
information in these events for this release. In future releases, these events will be
automatically generated by the system.

R1B2 GUI Detailed Design Rev. 0 3-340 11/20/00

3.19.1.13.26 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by
an operator in response to receiving an alert from the national weather service.

R1B2 GUI Detailed Design Rev. 0 3-341 11/20/00

3.19.1.14 TrafficEventManagement2 (Class Diagram)

TrafficEventEventType TrafficEventAddedInfo

LogEntriesAdded

TrafficEventAssociatedInfo

TrafficEventAssociationRemovedInfo

LaneConfigurationChangedInfo

TrafficEventTypeChangedInfo

ResponsePlanItemInfo

ResponsePlanItemsRemovedInfo

ResponseParticipationAddedInfo

ResponseParticipationRemovedInfo

ResponseParticipationChangedInfo

ResponsePlanItemStatusUpdate

ResponsePlanStatusChangedInfo

IncidentType

ResponseParticipant

1

1

11

1

ResponsePlanItemStatus

1

1

ResponseParticipationData

OrganizationParticipationDataResourceDeploymentData

DisabledVehicleData
RoadConditionsData

BasicEventData

IncidentVehicleData

IncidentData ActionEventData
1

ActionEventAdded
CongestionEventAdded
DisabledVehicleEventAdded
HistoryLogEntriesAdded
IncidentAdded
LaneConfigurationChanged
OrganizationParticipationAdded
OrganizationParticipationChanged
ParticipationRemoved
PlannedRoadwayClosureEventAdded
ResourceDeploymentAdded
ResourceDeploymentChanged
ResponsePlanItemAdded
ResponsePlanItemModified
ResponsePlanItemRemoved
ResponsePlanStatusChanged
SafetyEventAdded
SpecialEventAdded
TrafficEventAssociated
TrafficEventAssociationRemoved
TrafficEventClosed
TrafficEventDeleted
TrafficEventStateChanged
TrafficEventTypeChanged
WeatherSensorEventAdded
WeatherServiceEventAdded

TrafficEvent theTrafficEvent
BasicEventData trafficEventData

Identifier trafficEventID
LogEntry[] logEntries

Identifier primaryEventID
TrafficEvent primaryEvent
Identifier secondaryEventID
TrafficEvent secondaryEvent

Identifier trafficEventAID
Identifier trafficEventBID

Identifier eventID
LaneConfiguration newConfiguration

Identifier eventID
TrafficEvent newTrafficEvent
BasicEventData newEventData

Identifier trafficEventID
Identifier planItemID
string planItemName
ResponsePlanItem planItem
ResponsePlanItemData planItemData

Identifier trafficEventID
Identifier[] planItemIDs

Identifier trafficEventID
ReponseParticipationData participationData
ResponseParticipation participation

Identifier trafficEventID
Identifier participationID

Identifier trafficEventID
ResponseParticipationData participationData

Identifier planItemID
ResponsePlanItemStatus planItemStatus

Identifier trafficEventID
ResponsePlanItemStatusUpdate[] itemStatusList

TYPE_COLLISION

Identifier m_participationID
ResponseParticipant m_participant
boolean m_notified
TimeStamp m_timeNotified

boolean m_responded
TimeStamp m_timeResponded

boolean m_arrived
TimeStamp m_timeArrived
boolean m_departed
TimeStamp m_timeDeparted

string m_tagStateOfIssue
string m_tagNumber
boolean m_tireChange
boolean m_hotShot
boolean m_water
boolean m_gas
boolean m_directions
boolean m_ownDisposition
boolean m_callForService
boolean m_goneOnArrival
boolean m_abandonedVehicle
boolean m_relayOperator
boolean m_other
string m_otherDescription

boolean wet
boolean rain
boolean fog
boolean iceOrSnow

isValidForOpeningEvent():boolean

string m_locationDesc
Direction m_direction
string m_source
string m_county
string m_description
boolean m_isSceneCleared
TimeStamp m_sceneClearedTime
boolean m_isDelayCleared
TimeStamp m_delayClearedTime
boolean m_isConfirmed
TimeStamp m_confirmedTime
boolean m_isFalseAlarm
boolean m_isClosed
TimeStamp m_closedTime
long m_maxQueueLength
Identifier m_controllingOpCenterID
string m_controllingOpCenterName

long numCarsInvolved
long numCarsOverturned
long numPickupVanSuvsInvolved
long numPickupVanSuvsOverturned
long numSingleUnitTrucksInvolved
long numSingleUnitTrucksOverturned
long numSingleUnitTrucksLostLoad
long numTractorTrailersInvolved
long numTractorTrailersOverturned
long numTractorTrailersLostLoad
long numTractorTrailersJackKnifed
long numMotorcyclesInvolved

IncidentType m_incidentType
RoadConditionsData m_roadConditions
IncidentVehicleData m_vehicleData

string lastKnownState
boolean isActive
boolean hasBeenExecuted

boolean m_signal
boolean m_debrisInRoadway
boolean m_utility
boolean m_other
string m_otherDescription

string m_name
ResponseParticipantType m_type

Figure 224. TrafficEventManagement2 (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-342 11/20/00

3.19.1.14.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.19.1.14.2 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will
inherit all data shown in this class.

3.19.1.14.3 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.19.1.14.4 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

3.19.1.14.5 IncidentType (Class)

This enumeration lists all possible incident types.

3.19.1.14.6 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the
exchange of data between GUI and server.

3.19.1.14.7 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic
event is changed.

3.19.1.14.8 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event
history log of a traffic event.

3.19.1.14.9 OrganizationParticipationData (Class)

This class represents the data required to describe an organization’s participation in the
response to a traffic event.

3.19.1.14.10 ResourceDeploymentData (Class)

This class represents the data required to describe a resource’s participation in the response
to a traffic event.

R1B2 GUI Detailed Design Rev. 0 3-343 11/20/00

3.19.1.14.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in
a response.

3.19.1.14.12 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

3.19.1.14.13 ResponsePlanItemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

3.19.1.14.14 ResponsePlanStatusChangedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items in
the response plan of a traffic event change state.

3.19.1.14.15 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a
traffic event.

3.19.1.14.16 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the
response to a particular traffic event.

3.19.1.14.17 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

3.19.1.14.18 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response
participation object changes state.

3.19.1.14.19 ResponsePlanItemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added
or an existing response plan item is modified.

3.19.1.14.20 ResponsePlanItemsRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

R1B2 GUI Detailed Design Rev. 0 3-344 11/20/00

3.19.1.14.21 ResponsePlanItemStatusUpdate (Class)

This structure contains data that describes a status change to a particular response plan item.

3.19.1.14.22 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the
system.

3.19.1.14.23 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

3.19.1.14.24 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic
events is removed.

3.19.1.14.25 TrafficEventEventType (Class)

his enumeration defines the types of CORBA events that can be broadcast on a Traffic
Event related CORBA Event channel.

3.19.1.14.26 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The
traffic event object that represented the traffic event previously is removed from the system
and is replaced by the newTrafficEvent reference contained in this structure. If the
consumer of this CORBA event has stored any references to the traffic event previously,
those references should be replaced with this new reference.

R1B2 GUI Detailed Design Rev. 0 3-345 11/20/00

3.19.1.15 UserManagement (Class Diagram)

This class diagram contains the interfaces necessary to manage and utilize user profiles.

Profile

UserManager

1

UserName Role FunctionalRight

ProfileProperty

RoleListUserList FunctionalRightList

*

1

*

1

ProfilePropertyList

*

1

*

1

11
*

setProfileProperties(AccessToken, ProfilePropertyList):void
deleteProfileProperty(AccessToken,ProfileProperties):void
getProfileProperties():ProfilePropertyList

description
name

id
orgFilter

key
value

createUser(AccessToken token,UserName,Password):void
deleteUser(AccessToken,UserName):void
getUsers(AccessToken):UserList
getRoles(AccessToken):RoleList
getUserRoles(AccessToken,UserName):RoleList
getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList
setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void
createRole(AccessToken, Role):void
deleteRole(AccessToken,RoleName):void
changeUserPassword(AccessToken, UserName,Password,Password):void
setUserRoles(AccessToken, UserName, RoleList):void
grantRole(AccessToken, UserName,RoleName):void
revokeRole(AccessToken,UserName,RoleName):void
setUserPassword(AccessToken, UserName,Password):void
ping():void
getSystemProfile():Profile
getUserProfile(AccessToken,UserName):Profile

Figure 225. UserManagement (Class Diagram)

3.19.1.15.1 FunctionalRight (Class)

A functional right epresents a particular user capability. A functional right grants a
particular capability to perform system functions. Each functional right may be limited by
attaching the identifier of a particular organization to which this right is constrained. This
capability allows an administrator to grant a particular Role the ability to modify only
shared resources owned by the identified organization. The orgFilter identifier CHART2
will allow access to any organizations shared resources.

R1B2 GUI Detailed Design Rev. 0 3-346 11/20/00

3.19.1.15.2 FunctionalRightList (Class)

A list of functional rights.

3.19.1.15.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART II system behaves or presents information to a user.

3.19.1.15.4 ProfilePropertyList (Class)

A list of profile properties.

3.19.1.15.5 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the
system database.

3.19.1.15.6 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting the
user all functional rights contained within the role.

3.19.1.15.7 RoleList (Class)

This structure contains a list of roles.

3.19.1.15.8 UserList (Class)

A list of user names.

3.19.1.15.9 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

3.19.1.15.10 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

R1B2 GUI Detailed Design Rev. 0 3-347 11/20/00

3.20 Utility

3.20.1 Class Diagrams

3.20.1.1 UtilityClasses (Class Diagram)

DBUtility

java.lang.Thread

RecurringTimer

Log

MultiFormatter

DBConnectionManager

Identifier

PushEventSupplier

OpLogQueue

UniquelyIdentifiable

java.lang.Runnable

java.util.Properties

EventConsumerGroup

CosEventChannelAdmin.EventChannel

ServiceApplicationProperties

ServiceApplication

DefaultServiceApplication

CommandQueue

TokenManipulator

MultiConverter

FunctionalRightType

*

1*

logs message
using

11

1

1

*1

12

*

1

1..*

1

1

1

1

*

1

1

1 1

*1

2

1

*

1

POA

IdentifierGenerator

BucketSet

OpLogMessage

PushEventConsumer

LogFile

OperationsLog

ServiceApplicationModule

1

1

1

1

*

FMS

QueueableCommand

MultiParseListenerIdentifiableLookupTable

EventConsumer

ObjectRemovalListener

CommandStatusWatcher

CorbaUtilities

activate_object(Servant obj)
deactivate_object(object_id)

the_POAManager

createIdentifier()
areIdentifiersEqual()

add(comparable)
remove(comparable)
removeAll()
getElements(int)
size()
isEmpty()

m_comparables

String m_actionDesc
String m_actionType
String m_opCenter
Date m_timeStamp
String m_user

PushEventConsumer(channel, pushConsumer)

m_event_channel
m_pushConsumer

log(Object obj, String message, int level)
logStack(Object obj, String message, int level, Throwable th)
setKeepDays(int days)
setLogFileName(String fileName)
getKeepDays()
getLogFileName()
OpenLogFile()
setLogLevel(int level)
getLogLevel()
deleteLogFiles(Date presentTime)

m_logFileName
m_keepDays
m_logFile
m_creationDate
m_defFileName
m_logLevel

OperationsLog(DBConnectionManager db)
log()
flushLog
shutdown

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

addCommand(QueueableCommand cmd)
addCommandOnTop(QueueableCommand cmd)
shutdown()
-getNextCommand():QueueableCommand

m_commands
m_shutdown

TokenManipulator()
createToken(userName, opCenterID, opCenterName)
optimize(operation, orgFilter)
add(userToken, operation, orgFilter)
add(userToken, operation)
remove(userToken, operation, orgFilter)
remove(userToken, operation)
getOpCenterName(userToken)
getOpCenterID(userToken)
getHostName(userToken)
getUserName(userToken)
checkAccess(userToken, operation, orgFilter)
checkAccess(userToken, operation)
hasRight(userToken, operation, orgFilter)
validateToken(userToken)
calcCheckSum(userToken)
printToken(userToken)
printNybble(nybble)

multiToPlainText(multi)
plainTextToMulti(text, formatter)
parseMulti(multi, listener)

addDMS
removeDMS
blankSign
stopPolling
startPolling
forcedPoll
resetController
setMessage
getMessage
setPollInterval
getPollInterval
setCommLostTimeout
getCommLostTimeout
getAsyncPollingResults

execute()
interrupted()
getCmdStatus():CommandStatus
getToken():byte[]

objectRemoved(Object obj):void;

add(CommandStatus):void
start(long intervalMillis):void
stop():void
waitForCompletion():void

Vector m_cmdStatusList
CommandStatus m_masterStatus
String m_masterStatusText
long m_total
long m_success
long m_failure
long m_undetermined

findAllObjectsOfType(ORB, lookup, type):Object[]

start()
interrupt()
setDaemon(boolean)
run():void

addTimerListener(TimerUpdatable):void
removeTimerListener(TimerUpdatable):void
getIntervalMillis():long
setIntervalMillis(long):void
shutdown():void

-long m_intervalMillis

get():Log;
log()
logStack()

m_instance

plainTextToMulti(text)

getConnection():java.sql.Connection
releaseConnection();
shutdown();

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)
getChannel():EventChannel;
getMaxReconnectInterval(void):int;
setMaxReconnectInterval(int seconds):void;
push(Any data):void;
disconnectPushConsumer(void):void;

OpLogQueue()
put()
flush()
getFirstMessage()
removeFirstMessage()

m_logQueueTime

getID()
getName()

run()

getProperty()
setProperty()

add(consumer)
setInterval()
remove(consumer)
-hasConsumer(consumer)
-verifyConnections()

for_consumers()
for_suppliers()
destroy()

ServiceApplicationProperties(
String propertiesFilename)
getProperties()
getDefaultProperties()
getThreadModel():int
getThreadPoolSize():int
getDatabaseConnectString():String
getDatabaseUserName():String
getDatabasePassword():String
getModuleNames():String[]
getNetConnectionSite():String

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getIDGenerator():IdentifierGenerator

DefaultServiceApplication(String propertiesFilename)
-writeOffersToFile(String moduleName, int[] offerIDs):boolean
-removeOffersFromFile(String moduleName):boolean

escapeSingleQuotes(string):string
executeSQLStatement(conn, query, string, int):void

messageTxt(text)
lineJustification(justify)
newLine(pixelSkip)
newPage()
pageDisplayTime(timeOn, timeOff)
unknownTag(tag)
parseComplete()

put(Identifiable)
find(identifier)
remove(identifier)
elements()
size()

verifyConnection()
connect()
isEqual(consumer)

Figure 226. UtilityClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-348 11/20/00

3.20.1.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects
added to this collection must be of the same concrete type. Each element in the collection
has an associated counter that tracks how many times this element has been added. It is then
possible to get only the elements which have been added to the collection n times where n
is a positive integer value. This class is very useful for creating GUI menu’s for multiple
objects as it allows all objects to insert their menu items and then allows the user to get only
those items that all objects inserted.

3.20.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.20.1.1.3 CommandStatusWatcher (Class)

This class is a utility that monitors one or more command status objects for completion. It
periodically checks each command status object’s completion code and maintains statistics
on the number of failures and successes. It provides a blocking method that waits for all
command status objects to complete.

3.20.1.1.4 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.20.1.1.5 CorbaUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server
and GUI for CORBA Trader service transactions.

3.20.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two seperate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor

R1B2 GUI Detailed Design Rev. 0 3-349 11/20/00

thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.20.1.1.7 DBUtility (Class)

This class contains methods that allow interaction with the database.

3.20.1.1.8 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is
passed a properties file during construction. This properties file contains configuration data
used by this class to set the ORB concurrency model, determine which ORB services need
to available, provide database connectivity, etc. The properties file also contains the class
names of service modules that should be served by the service application. During startup,
the DefaultServiceApplication instantiates the service application module classes listed in
the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the
Trading Service. Each module must provide an implementation of the getOfferIDs method
and be able to return the offer ids for each object they have exported to the trader during
their initialization. The DefaultServiceApplication stores all offer IDs in a file during its
startup. Each module is expected to remove its offers from the trader during a shutdown. If
the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up
old offers prior to initializing modules during its next start. This keeps multiple offers for
the same object from being placed in the trader.

3.20.1.1.9 EventConsumer (Class)

This interface provides the methods that any EventConsumer object that would like to be
managed in an EventConsumerGroup must implement.

3.20.1.1.10 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that
they do not lose their connection to the CORBA event service. The class will periodically
ask each consumer to verify its connection to the event channel on which it is dependant to
receive events.

3.20.1.1.11 FMS (Class)

This class represents the CHART II system’s interface to the FMS SNMP manager. Most
methods included in this class have an associated method in the FMS SNMP Manager DLL
provided by the FMS Subsystem. The other methods in this class exist to provide easier
interface to the DLL. As an example, this class contains a blankSign method that actually
calls setMessage on the FMS Subsystem with the message set to blank and beacons off.

R1B2 GUI Detailed Design Rev. 0 3-350 11/20/00

3.20.1.1.12 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the
CHART2 system. It contains a static member for each possible functional right.

3.20.1.1.13 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

3.20.1.1.14 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.20.1.1.15 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable
objects.

3.20.1.1.16 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.20.1.1.17 java.lang.Thread (Class)

This class represents a java thread of execution.

3.20.1.1.18 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.20.1.1.19 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for
system trace messages.

R1B2 GUI Detailed Design Rev. 0 3-351 11/20/00

3.20.1.1.20 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log that is modeled
by the OperationsLog class.

3.20.1.1.21 MultiConverter (Class)

This class provides methods that perform conversions between the DMS MULTI mark-up
language and plain text. It also provides a method that will parse a MULTI message and
inform a MultiParseListener of elements found in the message.

3.20.1.1.22 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to
MULTI formatted messages.

3.20.1.1.23 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an
implementing class to be notified as parsing of a MULTI message occurs. An exemplary
use of a MultiParseListener would be the MessageView window which will need to have
the MULTI message parsed in order to display it as a pixmap.

3.20.1.1.24 ObjectRemovalListener (Class)

This interface is implemented by objects that wish to be notified of objects being removed
from the system. This is typically used by objects that store a collection of other objects,
such as a factory, to allow them to remove objects from their collection when the object is
to be removed from the system.

3.20.1.1.25 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the
time of instantiation of this class, it creates a queue for log entries. When a user of this class
provides a message to be logged, it creates a time-stamped OpLogMessage object and adds
this object to the OpLogQueue. Once queued, the messages are written to the database by
the queue driver thread in the order they were queued.

3.20.1.1.26 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system’s Operations Log.
Messages added to the queue can be removed in FIFO order.

R1B2 GUI Detailed Design Rev. 0 3-352 11/20/00

3.20.1.1.27 OpLogMessage (Class)

This class holds data for a message to be stored in the system’s Operations Log.

3.20.1.1.28 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

3.20.1.1.29 PushEventConsumer (Class)

This class is a utility class that will be responsible for connecting a consumer
implementation to an event channel, and maintaining that connection. When the
verifyConnection method is called, this object will determine if the channel has been lost
and will attempt to re-connect to the channel if it has.

3.20.1.1.30 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled indepently of a supplier’s push rate.

3.20.1.1.31 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.20.1.1.32 RecurringTimer (Class)

A recurring timer is a thread that notifies each TimerUpdatable object that has been
registered on a specified period.

R1B2 GUI Detailed Design Rev. 0 3-353 11/20/00

3.20.1.1.33 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
ChartII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.20.1.1.34 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.20.1.1.35 ServiceApplicationProperties (Class)

This class provides methods that allow the DefaultServiceApplication to access the
necessary properties from the java properties configuration file. It also provides a default
properties file which can be retrieved by anyone holding a ServiceApplication interface
reference. This gives each installed service module the opportunity to load default values
before retrieving property values from the properties file.

3.20.1.1.36 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code
in the system that knows how to create, modify and check a user’s functional rights. It
encapsulates the contents of an octet sequence that will be passed to every secure method.
Secure methods should call the checkAccess method to validate the user. Client processes
should use the check access method to verify access and optimize to reduce reduce the size
of the sequence to only those rights which are necessary to invoke the secure method. The
token contains the following information. Token version, Token ID, Token Time Stamp,
Username, Op Center ID, Op Center IOR, functional rights

3.20.1.1.37 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-354 11/20/00

1.1.1.1 UtilityClasses2 (Class Diagram)

1

LogEntryCache

ValueType

Constructor sets m_refCount to 1.
Additional references recorded by LogEntryCache
with incdRefCount() and decrRefCount()

CachedLogEntry

1* *1

1

1

*1
1*

*

ValueType

LogFilter DatabaseLogger
LogEntry

LogIterator

LogIteratorImpl

LogEntryCache deletes a CachedLogEntry from
hashtable when its refCount hits 0.

m_keys is an ordered array of
slots in the cache for the LogEntries
which match the filter. Each key
is used to extract the appropriate
LogEntry from the LogEntryCache.
m_nextEntry indexes into array
of m_entrySlots, pointing to the
next entry to extract.

factory createLogFilter() : LogFilter

TimeStamp m_startDate
TimeStamp m_endDate
Identifier m_eventID
string m_opCenterName
string m_containsText

DatabaseLogger(tableName)
addEntry(logEntry) : void
checlExpiredEntries() : void
getEntries(filter, maxCount) : LogIterator
shutdown() : void

equals() : boolean
factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

TimeStamp m_timestamp
Identifier m_eventID
string m_text
string m_author
string m_opCenterName

getMoreEntries(long maxCount) : LogEntryList
destroy():void

long m_timeOfLastUse

addEntry(LogEntry entry)

Object[] m_keys
int m_nextEntry

addEntry(LogEntry entry) : Object
getEntry (Object key) : LogEntry

java.util.Hashtable hashTable

decrRefCount() : void
equals() : boolean
getEntry() : LogEntry
getRefCount() : int
hashCode() : int
incrRefCount() : void

m_logEntry
m_refCount

Figure 227. UtilityClasses2 (Class Diagram)

3.20.1.1.38 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient
LogEntryCache. The object of this class encapsulates the stored log entry and adds a
reference count.

3.20.1.1.39 DatabaseLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.20.1.1.40 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 GUI Detailed Design Rev. 0 3-355 11/20/00

3.20.1.1.41 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess
of the requestor-specified maximum number of entries to return at one time. The
LogIterator stores references to the LogEntry objects thus cached, and requests additional
objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate
copies of LogEntry objects, and it deletes LogEntry objects when they are no longer
needed.

3.20.1.1.42 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.20.1.1.43 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a LogIterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

3.20.1.1.44 LogIteratorImpl (Class)

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work
which clients can request via the LogIterator interface. The LogIteratorImpl stores data
relating to cached LogEvents for a single retrieval request, and implements the client
request to get additional clumps of data pertaining to that request.

R1B2 GUI Detailed Design Rev. 0 3-356 11/20/00

3.20.2 Sequence Diagrams

3.20.2.1 DatabaseLogger:getEntries (Sequence Diagram)

First clump of entries is returned, plus an
iterator from which requestor can get more.

Next clump of LogEntry
objects is returned. If maxCount
entries are returned, caller can
call getMoreEntries() again.

LogEntryList

CachedLogEntry

LogEntry

getMoreEntries(maxCount)

create

getEntry(key)

Later, when
ready for more

DatabaseLogger

LogEntryList

LogEntry

LogIteratorImpl

LogEntry

LogEntryCache

CachedLogEntry

Hashtable

Really the
CachedLogEntry,
cast as an Object,
and known only as
a "key" by the
LogIterator

getEntries(maxCount)

create

"Request data
matching filter
from database"

[if no matching data]
LogEntryList (empty)

create

add LogEntry to LogEntryList

[*for each
row returned,

until maxCount
or done]

[if done]
LogEntryList create

create

addEntry(LogEntry)

get()

When LogEntryList comes back with less than maxCount entries, user should call destroy() on the iterator, see
CommLogModule::destroy for details. If user fails to call destroy, iterator will be destroyed by cleanup thread after
a period of disuse.

[if already cached]
incrRefCount

[if not currently cached]
put()

Object

[*for each
row returned,
until no more]

addEntry(LogEntry)

[if not currently cached]
create

This LogEntry is
retrieved

[*maxCount
times, or

until no more]

LogEntryList

decrRefCount()
if refCount ==0]

remove()

LogEntryList &
LogIterator

CachedLogEntry

getEntry()

add LogEntry
to LogEntryList

Figure 228. DatabaseLogger:getEntries (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-357 11/20/00

3.20.2.2 DictionaryWrapper:checkForBannedWords (Sequence Diagram)

This diagram shows processing performed by the DictionaryWrapper that is representative
of all methods that it duplicates in the Dictionary interface. When a method is called that is
to be delegated to a system dictionary, the DictionaryWrapper first attempts to use the
dictionary references (if any) that it has already discovered during a previous method
invocation. If no references exist (this is true for the first usage of the wrapper) or if all
existing references return CORBA failures when used, the DictionaryWrapper queries the
trader for all Dictionaries in the system and then attempts to use each until a “live”
reference is found or all of the newly discovered references return CORBA failures when
used.

A timestamp is used to prevent a flurry of trader queries when no Dictionary objects are
available. Prior to doing a trader query to (re)discover dictionaries, the DictionaryWrapper
makes sure that at least a minimum amount of time has elapsed since the last time it tried to
find a dictionary. The use of synchronization around the discovery process also helps to
prevent a flood of trader queries.

R1B2 GUI Detailed Design Rev. 0 3-358 11/20/00

"end synchronization"

[CORBA exception caught]
"remove reference from

vector"

[Dictionary.checkForBannedWords
did not throw a CORBA

exception]
results

checkForBannedWords

[current time minus
discovery timestamp

less than min discovery period]
CHART2Exception

findAllObjectsOfType

checkForBannedWords

[*while more refs in vector
and checkForBannedWords

has thrown a CORBA
exception]

"Narrow each object
returned to a Dictionary

and store in vector"

DMSMessage CorbaUtilities Dictionary

validateMessageContents

get()

checkForBannedWords

m_lock

[Dictionary.checkForBannedWords
did not throw a CORBA

exception]
results

"set discovery timestamp"

[CORBA exception caught]
"remove reference from

vector"

DictionaryWrapper

If Dictionary.checkForBannedWords is
able to be called, the results are returned
to the user and this method is finished.
Otherwise, if the minimum time has elapsed
since the last time it tried, the method will
try to find a different DictionaryRef to use.

[All refs threw CORBA
exception]

CHART2Exception

synchronized

[*while more refs in vector
and checkForBannedWords

has thrown a CORBA
exception]

DMS

Figure 229. DictionaryWrapper:checkForBannedWords (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 AC-1 11/20/00

Acronyms
The following acronyms appear throughout this document:

API Application Program Interface

BAA Business Area Architecture

CORBA Common Object Request Broker Architecture

DMS Dynamic Message Sign

EORS Emergency Operations Reporting System

FMS Field Management Station

GUI Graphical User Interface

IDL Interface Definition Language

ITS Intelligent Transportation Systems

NTCIP National Transportation Communications for ITS Protocol

OMG Object Management Group

ORB Object Request Broker

POA Portable Object Adapter

R1B2 Release 1, Build 2 of the CHART II System

TTS Text To Speech

UML Unified Modeling Language

R1B2 GUI Detailed Design Rev. 0 REF-1 11/20/00

References
CHART II GUI High Level Design For Release 1 Build 1, document number M361-DS-003R0,
Computer Sciences Corporation and PB Farradyne, Inc.
CHART II Release 4 Interim BAA Report, document number M361-BA-004R0, Computer
Sciences Corporation and PB Farradyne.
CHART II System Requirements Specification Release 1 Build 2, document number M361-RS-
002R1, Computer Sciences Corporation and PB Farradyne.

R1B2 High Level Design, document number M362-DS-005R0, Computer Sciences Corporation
and PB Farradyne.

FMS R1B1 High Level Design, document number M303-DS-001R0, Computer Sciences
Corporation and PB Farradyne.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

R1B2 GUI Detailed Design Rev. 0 G-1 11/20/00

Appendix A – Glossary

Action Event A Traffic Event related to the disposition of actions in response to device

failures and non-blockage events (e.g. signals, debris, utility, and signs).

Approved Word A word that is known to the system and has been approved for use when

communicating with the motoring public via a messaging device. The
dictionary will suggest words to the operator when it encounters a word that
has not been previously approved.

Arbitration Queue A prioritized queue containing messages for display or broadcast on a traveler

information device.

Banned Word A word that may not be used when communicating with the motoring public

via a messaging device such as a HAR or DMS.

Comm Log A collection of information received from any source that requires no action.

Congestion Event A Traffic Event related to roadway congestion situations. Congestion Events

may be recurring or non-recurring.

CORBA Event A CORBA mechanism using which different Chart2 components exchange

information without explicitly knowing about each other.

CORBA Trader A CORBA service that facilitates object location and discovery. A server

advertises an object in the Trading Service based on the kind of service
provided by the object. A client locates objects of interest by asking the
Trading Service to find all objects that provide a particular service.

Data Model An object repository that keeps track of changes to the various objects in the

repository and informs about these changes as they occur, to observers who
are interested in the objects in the repository. A Data Model identifies the
subject in a Subject/Observer design pattern.

Dictionary

A collection of banned and approved words.

Deployable Resource Any resource that can be deployed to the scene in order to provide assistance

during a traffic event.

DMS A Dynamic Message Sign that can be controlled by one Operations Center at

a time.

DMS Stored Message Item A plan item that is used to set a specific message on a specific DMS when

added to a Traffic Event response plan and activated.

Emergency Operations
Reporting System

A system external to CHART II that (among other things) keeps track of
planned roadway closures and permits.

R1B2 GUI Detailed Design Rev. 0 G-2 11/20/00

Factory A CORBA object that is capable of creating other CORBA objects of a
particular type. The newly created object will be served from the same
process as the factory object that creates it.

FMS Field Management Station through which the CHART II system

communicates with the devices in the field.

Functional Right A privilege that gives a user the right to perform a particular system action or

related group of actions. A functional right may be limited to pertain only to
those shared resources owned by a particular organization or can pertain to
the shared resources of all organizations.

Graphical User Interface Part of a software application that provides a graphical interface to its user.

GUI Wrapper Object A GUI wrapper object is one that wraps a server object to provide it with GUI

functionality such as menu handling. It also helps in performance
enhancement by caching data locally thereby avoiding network calls when not
necessary.

HAR A Highway Advisory Radio which can be controlled by one Operations

Center at a time.

HAR Message A message which is capable of being stored on a HAR. It is composed of a

message header, body and footer.

HAR Message Clip A message clip is part of a HAR message that could be a header or body or

footer. It can be stored either as a text or in one of the binary forms (WAV,
MP3 etc).

HAR Message Slot A message slot is one of the numbered message stores inside the HAR device

that can be used to store pre-fabricated messages useful for quick retrieval and
playing.

Incident Event A Traffic Event that is entered by an Operator in response to one of the

following types of incidents: Disabled in roadway, Personal injury, Property
damage, Fatality, Debris in roadway, Vehicle fire, Maintenance, Signal call,
Police activities, Off-road activity, Declaration of emergency, Weather, or
Other.

Installable Module A plugable GUI module that provides a specific function, which when

registered with the GUI is called on to initialize itself at the time of GUI
startup and shut down at the time of GUI shut down.

Lane Closure The closure of one or more roadway lanes resulting from a Traffic Event.

Message Library A collection of stored messages that can be displayed on the DMS or

broadcast on a HAR.

R1B2 GUI Detailed Design Rev. 0 G-3 11/20/00

Navigator A Navigator is a GUI window that contains a tree on the left-hand side and a
list on the right hand side. Tree elements represent groups of objects and the
list on the right hand side represents the objects in the selected group.

Object Discovery A GUI mechanism in which the client periodically asks the CORBA Trading

Service to find objects of those types that are of interest to the GUI, such as
DMS, HAR, Plan etc.

Operations Center A center where one or more users may log in to operate the Chart II system.

Operations centers are assigned responsibility for shared resources that are
controlled by users who are logged in at that operations center.

Operator A Chart II user that works at an Operations Center.

Organization

An organization is an agency that participates in the CHART II system and
owns one or more Shared Resources.

Plan A collection of plan items that can be added to the response plan of a traffic

event as a group.

Plan Item An action in the system that can be set up in advance to be activated one or

more times in the future. Plan items must be contained in a plan. Specific
types of plan items exist for specific functionality. A plan item may be copied
to a traffic event response plan and subsequently activated.

Response Plan A collection of response plan items created in response to a traffic event that

can be activated as a group..

Response Plan Item An action in the system that can be set up in response to a traffic event.

Response plan items must be contained in a response plan. Specific types of
response plan items exist for specific functionality. A response plan item
carries out its specific task when activated

Role A Role is a collection of functional rights that a user may perform. The roles

that pertain to a particular user for a particular login session are determined
when he/she logs into the system.

Safety Message Event A Traffic Event that is entered by an Operator to display and/or broadcast

safety messages.

Service Application A software application that can be configured to run one or more service

application modules and provides them basic services needed to serve
CORBA objects.

Service Application Module A software module that serves a related group of CORBA objects and can be

run within the context of a service application.

R1B2 GUI Detailed Design Rev. 0 G-4 11/20/00

Shared Resource A resource that is owned by an organization. A user may be granted access to
a shared resource owned by an organization through the functional rights
scheme.

SHAZAM A device used to notify the traveling public of the broadcast of a HAR

message.

Sign see DMS

Stored Message A message that may be broadcast on a HAR or displayed on a DMS.

System Profile Information used to define the configuration of the system. Properties stored

in the system profile apply to all users when they are logged in.

Token A token or access token is a security blob that encloses information about a

user and the functional rights associated with the user. All secured Chart2
operations require a token to be passed to it and based on the functional rights
found in a token a user is allowed or denied access.

Traffic Event A traffic event represents a roadway event that is affecting traffic conditions

and requires action from system operators.

Transferable Shared Resource A shared resource that can be transferred from one operations center to

another by a user with the appropriate functional rights.

User A user is somebody who uses the CHART II system. A user can perform

different operations in the system depending upon the roles they have been
granted.

User Profile A set of information used to correctly configure an individual user’s GUI on

startup.

Weather Service Alert Event A Traffic Event that is entered by an Operator in response to National

Weather Service advisories.

